結果
| 問題 | No.2524 Stripes |
| コンテスト | |
| ユーザー |
SnowBeenDiding
|
| 提出日時 | 2023-10-30 22:38:42 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 16,893 bytes |
| 記録 | |
| コンパイル時間 | 5,700 ms |
| コンパイル使用メモリ | 332,192 KB |
| 実行使用メモリ | 70,016 KB |
| 最終ジャッジ日時 | 2024-09-25 17:24:54 |
| 合計ジャッジ時間 | 14,319 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | TLE * 1 -- * 24 |
ソースコード
#include <atcoder/all>
using namespace atcoder;
using mint = modint998244353;
const long long MOD = 998244353;
// using mint = modint1000000007;
// const long long MOD = 1000000007;
// using mint = modint;//mint::set_mod(MOD);
#include <bits/stdc++.h>
#define rep(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++)
#define repeq(i, a, b) for (ll i = (ll)(a); i <= (ll)(b); i++)
#define repreq(i, a, b) for (ll i = (ll)(a); i >= (ll)(b); i--)
#define endl '\n' // fflush(stdout);
#define cYes cout << "Yes" << endl
#define cNo cout << "No" << endl
#define sortr(v) sort(v, greater<>())
#define pb push_back
#define pob pop_back
#define mp make_pair
#define mt make_tuple
#define FI first
#define SE second
#define ALL(v) (v).begin(), (v).end()
#define INFLL 3000000000000000100LL
#define INF 1000000100
#define PI acos(-1.0L)
#define TAU (PI * 2.0L)
using namespace std;
typedef long long ll;
typedef pair<ll, ll> Pll;
typedef tuple<ll, ll, ll> Tlll;
typedef vector<int> Vi;
typedef vector<Vi> VVi;
typedef vector<ll> Vl;
typedef vector<Vl> VVl;
typedef vector<VVl> VVVl;
typedef vector<Tlll> VTlll;
typedef vector<mint> Vm;
typedef vector<Vm> VVm;
typedef vector<string> Vs;
typedef vector<double> Vd;
typedef vector<char> Vc;
typedef vector<bool> Vb;
typedef vector<Pll> VPll;
typedef priority_queue<ll> PQl;
typedef priority_queue<ll, vector<ll>, greater<ll>> PQlr;
/* inout */
ostream &operator<<(ostream &os, mint const &m) {
os << m.val();
return os;
}
istream &operator>>(istream &is, mint &m) {
long long n;
is >> n, m = n;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int n = v.size();
rep(i, 0, n) { os << v[i] << " \n"[i == n - 1]; }
return os;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<vector<T>> &v) {
int n = v.size();
rep(i, 0, n) os << v[i];
return os;
}
template <typename T, typename S>
ostream &operator<<(ostream &os, pair<T, S> const &p) {
os << p.first << ' ' << p.second;
return os;
}
template <typename T, typename S>
ostream &operator<<(ostream &os, const map<T, S> &mp) {
for (auto &[key, val] : mp) {
os << key << ':' << val << '\n';
}
return os;
}
template <typename T>
ostream &operator<<(ostream &os, const set<T> &st) {
auto itr = st.begin();
for (int i = 0; i < (int)st.size(); i++) {
os << *itr << (i + 1 != (int)st.size() ? ' ' : '\n');
itr++;
}
return os;
}
template <typename T>
ostream &operator<<(ostream &os, multiset<T> &st) {
auto itr = st.begin();
for (int i = 0; i < (int)st.size(); i++) {
os << *itr << (i + 1 != (int)st.size() ? ' ' : '\n');
itr++;
}
return os;
}
template <typename T>
ostream &operator<<(ostream &os, queue<T> q) {
while (q.size()) {
os << q.front();
q.pop();
os << " \n"[q.empty()];
}
return os;
}
template <typename T>
ostream &operator<<(ostream &os, stack<T> st) {
vector<T> v;
while (st.size()) {
v.push_back(st.top());
st.pop();
}
reverse(ALL(v));
os << v;
return os;
}
template <class T, class Container, class Compare>
ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq) {
vector<T> v;
while (pq.size()) {
v.push_back(pq.top());
pq.pop();
}
os << v;
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
/* useful */
template <typename T>
int SMALLER(vector<T> &a, T x) {
return lower_bound(a.begin(), a.end(), x) - a.begin();
}
template <typename T>
int orSMALLER(vector<T> &a, T x) {
return upper_bound(a.begin(), a.end(), x) - a.begin();
}
template <typename T>
int BIGGER(vector<T> &a, T x) {
return a.size() - orSMALLER(a, x);
}
template <typename T>
int orBIGGER(vector<T> &a, T x) {
return a.size() - SMALLER(a, x);
}
template <typename T>
int COUNT(vector<T> &a, T x) {
return upper_bound(ALL(a), x) - lower_bound(ALL(a), x);
}
template <typename T, typename S>
bool chmax(T &a, S b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <typename T, typename S>
bool chmin(T &a, S b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
template <typename T>
void press(T &v) {
v.erase(unique(ALL(v)), v.end());
}
template <typename T>
vector<int> zip(vector<T> b) {
pair<T, int> p[b.size() + 10];
int a = b.size();
vector<int> l(a);
for (int i = 0; i < a; i++) p[i] = mp(b[i], i);
sort(p, p + a);
int w = 0;
for (int i = 0; i < a; i++) {
if (i && p[i].first != p[i - 1].first) w++;
l[p[i].second] = w;
}
return l;
}
template <typename T>
vector<T> vis(vector<T> &v) {
vector<T> S(v.size() + 1);
rep(i, 1, S.size()) S[i] += v[i - 1] + S[i - 1];
return S;
}
ll dem(ll a, ll b) { return ((a + b - 1) / (b)); }
ll dtoll(double d, int g) { return round(d * pow(10, g)); }
const double EPS = 1e-10;
void init() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
cout << fixed << setprecision(12);
}
// do {} while (next_permutation(ALL(vec)));
/********************************** START **********************************/
void sol();
int main() {
init();
int q = 1;
// cin >> q;
while (q--) sol();
return 0;
}
/********************************** SOLVE **********************************/
template <class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
FormalPowerSeries() {}
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = (*this).size(), m = g.size();
(*this).resize(max(n, m));
for (int i = 0; i < max(n, m); i++) {
(*this)[i] += g[i];
}
return *this;
}
F &operator-=(const F &g) {
int n = (*this).size(), m = g.size();
for (int i = 0; i < min(n, m); i++) {
(*this)[i] -= g[i];
}
return *this;
}
F &operator<<=(const int d) {
int n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F &operator>>=(const int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F inv(int d = -1) const {
int n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d > 0);
F res{(*this)[0].inv()};
while (res.size() < d) {
int m = size(res);
F f(begin(*this), begin(*this) + min(n, 2 * m));
F r(res);
f.resize(2 * m), internal::butterfly(f);
r.resize(2 * m), internal::butterfly(r);
for (int i = 0; i < 2 * m; i++) {
f[i] *= r[i];
}
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2 * m), internal::butterfly(f);
for (int i = 0; i < 2 * m; i++) {
f[i] *= r[i];
}
internal::butterfly_inv(f);
T iz = T(2 * m).inv();
iz *= -iz;
for (int i = 0; i < m; i++) {
f[i] *= iz;
}
res.insert(res.end(), f.begin(), f.begin() + m);
}
return {res.begin(), res.begin() + d};
}
// // fast: FMT-friendly modulus only
// F &operator*=(const F &g) {
// *this = convolution(*this, g);
// while ((*this).size() > 1 && (*this).back() == T(0))
// (*this).pop_back(); return *this;
// }
// F &operator/=(const F &g) {
// int n = (*this).size();
// *this = convolution(*this, g.inv(n));
// (*this).resize(n);
// return *this;
// }
// naive
F &operator*=(const F &g) {
int n = (*this).size(), m = g.size();
F ret;
ret.resize(n + m);
rep(i, 0, n + m) ret[i] = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ret[i + j] += (*this)[i] * g[j];
}
}
*this = ret;
return *this;
}
F &operator/=(const F &g) {
assert(g[0] != T(0));
T ig0 = g[0].inv();
int n = (*this).size(), m = g.size();
for (int i = 0; i < n; i++) {
for (int j = 1; j < min(i + 1, m); j++) {
(*this)[i] -= (*this)[i - j] * g[j];
}
(*this)[i] *= ig0;
}
return *this;
}
// sparse
F &operator*=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0)
g.erase(g.begin());
else
c = 0;
for (int i = n - 1; i >= 0; i--) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i - j] * b;
}
}
return *this;
}
F &operator/=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
for (int i = 0; i < n; i++) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i - j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
// multiply and divide (1 + cz^d)
void multiply(const int d, const T c) {
int n = (*this).size();
if (c == T(1))
for (int i = n - d - 1; i >= 0; i--) (*this)[i + d] += (*this)[i];
else if (c == T(-1))
for (int i = n - d - 1; i >= 0; i--) (*this)[i + d] -= (*this)[i];
else
for (int i = n - d - 1; i >= 0; i--)
(*this)[i + d] += (*this)[i] * c;
}
void divide(const int d, const T c) {
int n = (*this).size();
if (c == T(1))
for (int i = 0; i < n - d; i++) (*this)[i + d] -= (*this)[i];
else if (c == T(-1))
for (int i = 0; i < n - d; i++) (*this)[i + d] += (*this)[i];
else
for (int i = 0; i < n - d; i++) (*this)[i + d] -= (*this)[i] * c;
}
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; }
F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; }
};
template <class T>
struct Matrix {
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, std::vector<T>(m, zero())) {}
Matrix(size_t n) : A(n, std::vector<T>(n, zero())){};
T zero() { return (T()); }
size_t height() const { return (A.size()); }
size_t width() const { return (A[0].size()); }
inline const vector<T> &operator[](int k) const { return (A.at(k)); }
inline vector<T> &operator[](int k) { return (A.at(k)); }
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(n, vector<T>(m, zero()));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
// cerr << "今からかけるよ!" << endl;
// cerr << (*this)[i][j] << "x";
// cerr << B[i][j] << "=";
for (int k = 0; k < p; k++) {
if ((*this)[i][k] == zero()) continue;
if (B[k][j] == zero()) continue;
C[i][j] += (*this)[i][k] * B[k][j];
}
// cerr << C[i][j] << endl;
}
}
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "\n" : " ");
}
}
return (os);
}
T determinant() { // O(n^3)
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) {
if (B[j][i] != 0) idx = j;
}
if (idx == -1) return (0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
using mint = modint998244353;
using fps = FormalPowerSeries<mint>;
using sfps = vector<pair<int, mint>>;
void sol() {
int n;
string s;
cin >> n >> s;
int nn = n;
set<ll> nibe;
rep(i, 0, 40) { nibe.insert(1LL << i); }
while (!nibe.count(n)) {
n++;
s += 'E';
}
vector<Matrix<fps>> dp(n * 2, Matrix<fps>(2, 2));
// fps型の0と1とxを定義
fps zero = {0}, one = {1}, x = {0, 1};
rep(i, 0, n) {
// R に[[1,x],[0,1]]の行列を
// B に[[1,0],[x,1]]の行列を
// E に[[1,0],[0,1]]の行列を入れる
if (s[i] == 'R') {
dp[i + n][0][0] = one;
dp[i + n][0][1] = x;
dp[i + n][1][0] = zero;
dp[i + n][1][1] = one;
} else if (s[i] == 'B') {
dp[i + n][0][0] = one;
dp[i + n][0][1] = zero;
dp[i + n][1][0] = x;
dp[i + n][1][1] = one;
} else {
dp[i + n][0][0] = one;
dp[i + n][0][1] = zero;
dp[i + n][1][0] = zero;
dp[i + n][1][1] = one;
}
}
repreq(i, n - 1, 1) { dp[i] = dp[i * 2] * dp[i * 2 + 1]; }
// rep(i, 1, dp.size()) {
// cerr << i << endl;
// rep(j, 0, 2) {
// rep(k, 0, 2) {
// cerr << j << ' ' << k << ' ' << dp[i][j][k] << endl;
// }
// }
// }
fps ans = dp[1][0][0] + dp[1][0][1] + dp[1][1][0] + dp[1][1][1];
repeq(i, 1, nn) {
if (i < ans.size())
cout << ans[i] << endl;
else
cout << 0 << endl;
}
// cout << ans;
// fps p = {2, 3}, q = {2, 5};
// cout << p * q << endl;
}
SnowBeenDiding