結果

問題 No.2524 Stripes
ユーザー SnowBeenDidingSnowBeenDiding
提出日時 2023-10-30 22:38:42
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 16,893 bytes
コンパイル時間 5,700 ms
コンパイル使用メモリ 332,192 KB
実行使用メモリ 70,016 KB
最終ジャッジ日時 2024-09-25 17:24:54
合計ジャッジ時間 14,319 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,376 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 WA -
testcase_03 TLE -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <atcoder/all>
using namespace atcoder;
using mint = modint998244353;
const long long MOD = 998244353;
// using mint = modint1000000007;
// const long long MOD = 1000000007;
// using mint = modint;//mint::set_mod(MOD);

#include <bits/stdc++.h>
#define rep(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++)
#define repeq(i, a, b) for (ll i = (ll)(a); i <= (ll)(b); i++)
#define repreq(i, a, b) for (ll i = (ll)(a); i >= (ll)(b); i--)
#define endl '\n'  // fflush(stdout);
#define cYes cout << "Yes" << endl
#define cNo cout << "No" << endl
#define sortr(v) sort(v, greater<>())
#define pb push_back
#define pob pop_back
#define mp make_pair
#define mt make_tuple
#define FI first
#define SE second
#define ALL(v) (v).begin(), (v).end()
#define INFLL 3000000000000000100LL
#define INF 1000000100
#define PI acos(-1.0L)
#define TAU (PI * 2.0L)

using namespace std;

typedef long long ll;
typedef pair<ll, ll> Pll;
typedef tuple<ll, ll, ll> Tlll;
typedef vector<int> Vi;
typedef vector<Vi> VVi;
typedef vector<ll> Vl;
typedef vector<Vl> VVl;
typedef vector<VVl> VVVl;
typedef vector<Tlll> VTlll;
typedef vector<mint> Vm;
typedef vector<Vm> VVm;
typedef vector<string> Vs;
typedef vector<double> Vd;
typedef vector<char> Vc;
typedef vector<bool> Vb;
typedef vector<Pll> VPll;
typedef priority_queue<ll> PQl;
typedef priority_queue<ll, vector<ll>, greater<ll>> PQlr;

/* inout */
ostream &operator<<(ostream &os, mint const &m) {
    os << m.val();
    return os;
}
istream &operator>>(istream &is, mint &m) {
    long long n;
    is >> n, m = n;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
    int n = v.size();
    rep(i, 0, n) { os << v[i] << " \n"[i == n - 1]; }
    return os;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<vector<T>> &v) {
    int n = v.size();
    rep(i, 0, n) os << v[i];
    return os;
}
template <typename T, typename S>
ostream &operator<<(ostream &os, pair<T, S> const &p) {
    os << p.first << ' ' << p.second;
    return os;
}
template <typename T, typename S>
ostream &operator<<(ostream &os, const map<T, S> &mp) {
    for (auto &[key, val] : mp) {
        os << key << ':' << val << '\n';
    }
    return os;
}
template <typename T>
ostream &operator<<(ostream &os, const set<T> &st) {
    auto itr = st.begin();
    for (int i = 0; i < (int)st.size(); i++) {
        os << *itr << (i + 1 != (int)st.size() ? ' ' : '\n');
        itr++;
    }
    return os;
}
template <typename T>
ostream &operator<<(ostream &os, multiset<T> &st) {
    auto itr = st.begin();
    for (int i = 0; i < (int)st.size(); i++) {
        os << *itr << (i + 1 != (int)st.size() ? ' ' : '\n');
        itr++;
    }
    return os;
}
template <typename T>
ostream &operator<<(ostream &os, queue<T> q) {
    while (q.size()) {
        os << q.front();
        q.pop();
        os << " \n"[q.empty()];
    }
    return os;
}
template <typename T>
ostream &operator<<(ostream &os, stack<T> st) {
    vector<T> v;
    while (st.size()) {
        v.push_back(st.top());
        st.pop();
    }
    reverse(ALL(v));
    os << v;
    return os;
}
template <class T, class Container, class Compare>
ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq) {
    vector<T> v;
    while (pq.size()) {
        v.push_back(pq.top());
        pq.pop();
    }
    os << v;
    return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
    for (T &in : v) is >> in;
    return is;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
    is >> p.first >> p.second;
    return is;
}

/* useful */
template <typename T>
int SMALLER(vector<T> &a, T x) {
    return lower_bound(a.begin(), a.end(), x) - a.begin();
}
template <typename T>
int orSMALLER(vector<T> &a, T x) {
    return upper_bound(a.begin(), a.end(), x) - a.begin();
}
template <typename T>
int BIGGER(vector<T> &a, T x) {
    return a.size() - orSMALLER(a, x);
}
template <typename T>
int orBIGGER(vector<T> &a, T x) {
    return a.size() - SMALLER(a, x);
}
template <typename T>
int COUNT(vector<T> &a, T x) {
    return upper_bound(ALL(a), x) - lower_bound(ALL(a), x);
}
template <typename T, typename S>
bool chmax(T &a, S b) {
    if (a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <typename T, typename S>
bool chmin(T &a, S b) {
    if (a > b) {
        a = b;
        return 1;
    }
    return 0;
}
template <typename T>
void press(T &v) {
    v.erase(unique(ALL(v)), v.end());
}
template <typename T>
vector<int> zip(vector<T> b) {
    pair<T, int> p[b.size() + 10];
    int a = b.size();
    vector<int> l(a);
    for (int i = 0; i < a; i++) p[i] = mp(b[i], i);
    sort(p, p + a);
    int w = 0;
    for (int i = 0; i < a; i++) {
        if (i && p[i].first != p[i - 1].first) w++;
        l[p[i].second] = w;
    }
    return l;
}
template <typename T>
vector<T> vis(vector<T> &v) {
    vector<T> S(v.size() + 1);
    rep(i, 1, S.size()) S[i] += v[i - 1] + S[i - 1];
    return S;
}

ll dem(ll a, ll b) { return ((a + b - 1) / (b)); }
ll dtoll(double d, int g) { return round(d * pow(10, g)); }

const double EPS = 1e-10;

void init() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);
    cout << fixed << setprecision(12);
}

// do {} while (next_permutation(ALL(vec)));

/********************************** START **********************************/

void sol();

int main() {
    init();
    int q = 1;
    // cin >> q;
    while (q--) sol();
    return 0;
}

/********************************** SOLVE **********************************/

template <class T>
struct FormalPowerSeries : vector<T> {
    using vector<T>::vector;
    using vector<T>::operator=;
    using F = FormalPowerSeries;

    FormalPowerSeries() {}

    F operator-() const {
        F res(*this);
        for (auto &e : res) e = -e;
        return res;
    }
    F &operator*=(const T &g) {
        for (auto &e : *this) e *= g;
        return *this;
    }
    F &operator/=(const T &g) {
        assert(g != T(0));
        *this *= g.inv();
        return *this;
    }
    F &operator+=(const F &g) {
        int n = (*this).size(), m = g.size();
        (*this).resize(max(n, m));
        for (int i = 0; i < max(n, m); i++) {
            (*this)[i] += g[i];
        }
        return *this;
    }
    F &operator-=(const F &g) {
        int n = (*this).size(), m = g.size();
        for (int i = 0; i < min(n, m); i++) {
            (*this)[i] -= g[i];
        }
        return *this;
    }
    F &operator<<=(const int d) {
        int n = (*this).size();
        (*this).insert((*this).begin(), d, 0);
        (*this).resize(n);
        return *this;
    }
    F &operator>>=(const int d) {
        int n = (*this).size();
        (*this).erase((*this).begin(), (*this).begin() + min(n, d));
        (*this).resize(n);
        return *this;
    }
    F inv(int d = -1) const {
        int n = (*this).size();
        assert(n != 0 && (*this)[0] != 0);
        if (d == -1) d = n;
        assert(d > 0);
        F res{(*this)[0].inv()};
        while (res.size() < d) {
            int m = size(res);
            F f(begin(*this), begin(*this) + min(n, 2 * m));
            F r(res);
            f.resize(2 * m), internal::butterfly(f);
            r.resize(2 * m), internal::butterfly(r);
            for (int i = 0; i < 2 * m; i++) {
                f[i] *= r[i];
            }
            internal::butterfly_inv(f);
            f.erase(f.begin(), f.begin() + m);
            f.resize(2 * m), internal::butterfly(f);
            for (int i = 0; i < 2 * m; i++) {
                f[i] *= r[i];
            }
            internal::butterfly_inv(f);
            T iz = T(2 * m).inv();
            iz *= -iz;
            for (int i = 0; i < m; i++) {
                f[i] *= iz;
            }
            res.insert(res.end(), f.begin(), f.begin() + m);
        }
        return {res.begin(), res.begin() + d};
    }

    // // fast: FMT-friendly modulus only
    // F &operator*=(const F &g) {
    //     *this = convolution(*this, g);
    //     while ((*this).size() > 1 && (*this).back() == T(0))
    //     (*this).pop_back(); return *this;
    // }
    // F &operator/=(const F &g) {
    //     int n = (*this).size();
    //     *this = convolution(*this, g.inv(n));
    //     (*this).resize(n);
    //     return *this;
    // }

    // naive
    F &operator*=(const F &g) {
        int n = (*this).size(), m = g.size();
        F ret;
        ret.resize(n + m);
        rep(i, 0, n + m) ret[i] = 0;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ret[i + j] += (*this)[i] * g[j];
            }
        }
        *this = ret;
        return *this;
    }
    F &operator/=(const F &g) {
        assert(g[0] != T(0));
        T ig0 = g[0].inv();
        int n = (*this).size(), m = g.size();
        for (int i = 0; i < n; i++) {
            for (int j = 1; j < min(i + 1, m); j++) {
                (*this)[i] -= (*this)[i - j] * g[j];
            }
            (*this)[i] *= ig0;
        }
        return *this;
    }

    // sparse
    F &operator*=(vector<pair<int, T>> g) {
        int n = (*this).size();
        auto [d, c] = g.front();
        if (d == 0)
            g.erase(g.begin());
        else
            c = 0;
        for (int i = n - 1; i >= 0; i--) {
            (*this)[i] *= c;
            for (auto &[j, b] : g) {
                if (j > i) break;
                (*this)[i] += (*this)[i - j] * b;
            }
        }
        return *this;
    }
    F &operator/=(vector<pair<int, T>> g) {
        int n = (*this).size();
        auto [d, c] = g.front();
        assert(d == 0 && c != T(0));
        T ic = c.inv();
        g.erase(g.begin());
        for (int i = 0; i < n; i++) {
            for (auto &[j, b] : g) {
                if (j > i) break;
                (*this)[i] -= (*this)[i - j] * b;
            }
            (*this)[i] *= ic;
        }
        return *this;
    }

    // multiply and divide (1 + cz^d)
    void multiply(const int d, const T c) {
        int n = (*this).size();
        if (c == T(1))
            for (int i = n - d - 1; i >= 0; i--) (*this)[i + d] += (*this)[i];
        else if (c == T(-1))
            for (int i = n - d - 1; i >= 0; i--) (*this)[i + d] -= (*this)[i];
        else
            for (int i = n - d - 1; i >= 0; i--)
                (*this)[i + d] += (*this)[i] * c;
    }
    void divide(const int d, const T c) {
        int n = (*this).size();
        if (c == T(1))
            for (int i = 0; i < n - d; i++) (*this)[i + d] -= (*this)[i];
        else if (c == T(-1))
            for (int i = 0; i < n - d; i++) (*this)[i + d] += (*this)[i];
        else
            for (int i = 0; i < n - d; i++) (*this)[i + d] -= (*this)[i] * c;
    }

    T eval(const T &a) const {
        T x(1), res(0);
        for (auto e : *this) res += e * x, x *= a;
        return res;
    }

    F operator*(const T &g) const { return F(*this) *= g; }
    F operator/(const T &g) const { return F(*this) /= g; }
    F operator+(const F &g) const { return F(*this) += g; }
    F operator-(const F &g) const { return F(*this) -= g; }
    F operator<<(const int d) const { return F(*this) <<= d; }
    F operator>>(const int d) const { return F(*this) >>= d; }
    F operator*(const F &g) const { return F(*this) *= g; }
    F operator/(const F &g) const { return F(*this) /= g; }
    F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; }
    F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; }
};

template <class T>
struct Matrix {
    vector<vector<T>> A;

    Matrix() {}

    Matrix(size_t n, size_t m) : A(n, std::vector<T>(m, zero())) {}

    Matrix(size_t n) : A(n, std::vector<T>(n, zero())){};

    T zero() { return (T()); }

    size_t height() const { return (A.size()); }

    size_t width() const { return (A[0].size()); }

    inline const vector<T> &operator[](int k) const { return (A.at(k)); }

    inline vector<T> &operator[](int k) { return (A.at(k)); }

    static Matrix I(size_t n) {
        Matrix mat(n);
        for (int i = 0; i < n; i++) mat[i][i] = 1;
        return (mat);
    }

    Matrix &operator+=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
        return (*this);
    }

    Matrix &operator-=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
        return (*this);
    }

    Matrix &operator*=(const Matrix &B) {
        size_t n = height(), m = B.width(), p = width();
        assert(p == B.height());
        vector<vector<T>> C(n, vector<T>(m, zero()));
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                // cerr << "今からかけるよ!" << endl;
                // cerr << (*this)[i][j] << "x";
                // cerr << B[i][j] << "=";
                for (int k = 0; k < p; k++) {
                    if ((*this)[i][k] == zero()) continue;
                    if (B[k][j] == zero()) continue;
                    C[i][j] += (*this)[i][k] * B[k][j];
                }
                // cerr << C[i][j] << endl;
            }
        }
        A.swap(C);
        return (*this);
    }

    Matrix &operator^=(long long k) {
        Matrix B = Matrix::I(height());
        while (k > 0) {
            if (k & 1) B *= *this;
            *this *= *this;
            k >>= 1LL;
        }
        A.swap(B.A);
        return (*this);
    }

    Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }

    Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }

    Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }

    Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }

    friend ostream &operator<<(ostream &os, Matrix &p) {
        size_t n = p.height(), m = p.width();
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                os << p[i][j] << (j + 1 == m ? "\n" : " ");
            }
        }
        return (os);
    }

    T determinant() {  // O(n^3)
        Matrix B(*this);
        assert(width() == height());
        T ret = 1;
        for (int i = 0; i < width(); i++) {
            int idx = -1;
            for (int j = i; j < width(); j++) {
                if (B[j][i] != 0) idx = j;
            }
            if (idx == -1) return (0);
            if (i != idx) {
                ret *= -1;
                swap(B[i], B[idx]);
            }
            ret *= B[i][i];
            T vv = B[i][i];
            for (int j = 0; j < width(); j++) {
                B[i][j] /= vv;
            }
            for (int j = i + 1; j < width(); j++) {
                T a = B[j][i];
                for (int k = 0; k < width(); k++) {
                    B[j][k] -= B[i][k] * a;
                }
            }
        }
        return (ret);
    }
};

using mint = modint998244353;
using fps = FormalPowerSeries<mint>;
using sfps = vector<pair<int, mint>>;

void sol() {
    int n;
    string s;
    cin >> n >> s;
    int nn = n;
    set<ll> nibe;
    rep(i, 0, 40) { nibe.insert(1LL << i); }
    while (!nibe.count(n)) {
        n++;
        s += 'E';
    }
    vector<Matrix<fps>> dp(n * 2, Matrix<fps>(2, 2));
    // fps型の0と1とxを定義
    fps zero = {0}, one = {1}, x = {0, 1};
    rep(i, 0, n) {
        // R に[[1,x],[0,1]]の行列を
        // B に[[1,0],[x,1]]の行列を
        // E に[[1,0],[0,1]]の行列を入れる
        if (s[i] == 'R') {
            dp[i + n][0][0] = one;
            dp[i + n][0][1] = x;
            dp[i + n][1][0] = zero;
            dp[i + n][1][1] = one;
        } else if (s[i] == 'B') {
            dp[i + n][0][0] = one;
            dp[i + n][0][1] = zero;
            dp[i + n][1][0] = x;
            dp[i + n][1][1] = one;
        } else {
            dp[i + n][0][0] = one;
            dp[i + n][0][1] = zero;
            dp[i + n][1][0] = zero;
            dp[i + n][1][1] = one;
        }
    }
    repreq(i, n - 1, 1) { dp[i] = dp[i * 2] * dp[i * 2 + 1]; }
    // rep(i, 1, dp.size()) {
    //     cerr << i << endl;
    //     rep(j, 0, 2) {
    //         rep(k, 0, 2) {
    //             cerr << j << ' ' << k << ' ' << dp[i][j][k] << endl;
    //         }
    //     }
    // }
    fps ans = dp[1][0][0] + dp[1][0][1] + dp[1][1][0] + dp[1][1][1];
    repeq(i, 1, nn) {
        if (i < ans.size())
            cout << ans[i] << endl;
        else
            cout << 0 << endl;
    }
    // cout << ans;
    // fps p = {2, 3}, q = {2, 5};
    // cout << p * q << endl;
}
0