結果

問題 No.2529 Treasure Hunter
ユーザー noya2noya2
提出日時 2023-11-03 22:09:45
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 21,252 bytes
コンパイル時間 3,374 ms
コンパイル使用メモリ 260,968 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-25 20:34:47
合計ジャッジ時間 4,047 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 7 ms
5,632 KB
testcase_01 WA -
testcase_02 AC 7 ms
5,632 KB
testcase_03 AC 7 ms
5,632 KB
testcase_04 AC 7 ms
5,504 KB
testcase_05 AC 7 ms
5,632 KB
testcase_06 AC 7 ms
5,632 KB
testcase_07 AC 7 ms
5,504 KB
testcase_08 WA -
testcase_09 AC 7 ms
5,632 KB
testcase_10 AC 7 ms
5,632 KB
testcase_11 AC 7 ms
5,632 KB
testcase_12 AC 7 ms
5,504 KB
testcase_13 AC 7 ms
5,504 KB
testcase_14 AC 6 ms
5,632 KB
testcase_15 AC 7 ms
5,632 KB
testcase_16 AC 7 ms
5,504 KB
testcase_17 AC 6 ms
5,632 KB
testcase_18 AC 6 ms
5,632 KB
testcase_19 AC 7 ms
5,504 KB
testcase_20 AC 7 ms
5,632 KB
testcase_21 AC 6 ms
5,632 KB
testcase_22 AC 7 ms
5,632 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"
using namespace std;

#include<bits/stdc++.h>
#line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp"
namespace noya2 {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p){
    os << p.first << " " << p.second;
    return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p){
    is >> p.first >> p.second;
    return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v){
    int s = (int)v.size();
    for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
    return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v){
    for (auto &x : v) is >> x;
    return is;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u){
    cin >> t;
    in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u){
    cout << t;
    if (sizeof...(u)) cout << sep;
    out(u...);
}

template<typename T>
void out(const vector<vector<T>> &vv){
    int s = (int)vv.size();
    for (int i = 0; i < s; i++) out(vv[i]);
}

struct IoSetup {
    IoSetup(){
        cin.tie(nullptr);
        ios::sync_with_stdio(false);
        cout << fixed << setprecision(15);
        cerr << fixed << setprecision(7);
    }
} iosetup_noya2;

} // namespace noya2
#line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp"
namespace noya2{

const int iinf = 1'000'000'007;
const long long linf = 2'000'000'000'000'000'000LL;
const long long mod998 =  998244353;
const long long mod107 = 1000000007;
const long double pi = 3.14159265358979323;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";

void yes(){ cout << "Yes\n"; }
void no(){ cout << "No\n"; }
void YES(){ cout << "YES\n"; }
void NO(){ cout << "NO\n"; }
void yn(bool t){ t ? yes() : no(); }
void YN(bool t){ t ? YES() : NO(); }

} // namespace noya2
#line 1 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"
namespace noya2{

unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){
    if (a == 0 || b == 0) return a + b;
    int n = __builtin_ctzll(a); a >>= n;
    int m = __builtin_ctzll(b); b >>= m;
    while (a != b) {
        int mm = __builtin_ctzll(a - b);
        bool f = a > b;
        unsigned long long c = f ? a : b;
        b = f ? b : a;
        a = (c - b) >> mm;
    }
    return a << min(n, m);
}

template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }

long long sqrt_fast(long long n) {
    if (n <= 0) return 0;
    long long x = sqrt(n);
    while ((x + 1) * (x + 1) <= n) x++;
    while (x * x > n) x--;
    return x;
}

template<typename T> T floor_div(const T n, const T d) {
    assert(d != 0);
    return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);
}

template<typename T> T ceil_div(const T n, const T d) {
    assert(d != 0);
    return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);
}

template<typename T> void uniq(vector<T> &v){
    sort(v.begin(),v.end());
    v.erase(unique(v.begin(),v.end()),v.end());
}

template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }

template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }

template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }

} // namespace noya2
#line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"

#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)
#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)
#define all(v) (v).begin(),(v).end()

using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;

namespace noya2{

/* ~ (. _________ . /) */

}

using namespace noya2;


#line 2 "c.cpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp"

namespace noya2 {

constexpr ll safe_mod(ll x, ll m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

constexpr ll pow_mod_constexpr(ll x, ll n, int m) {
    if (m == 1) return 0;
    uint _m = (uint)(m);
    ull r = 1;
    ull y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    ll d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr ll bases[3] = {2, 7, 61};
    for (ll a : bases) {
        ll t = d;
        ll y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u; 
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (ll)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m);

} // namespace noya2
#line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp"

namespace noya2{

struct barrett {
    uint _m;
    ull  im;
    explicit barrett(uint m) : _m(m), im((ull)(-1) / m + 1) {}
    uint umod() const { return _m; }
    uint mul(uint a, uint b) const {
        ull z = a;
        z *= b;
        ull x = ull((__uint128_t(z) * im) >> 64);
        uint v = (uint)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

template <int m>
struct static_modint {
    using mint = static_modint;
  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    constexpr static_modint() : _v(0) {}
    template<signed_integral T>
    constexpr static_modint(T v){
        ll x = (ll)(v % (ll)(umod()));
        if (x < 0) x += umod();
        _v = (uint)(x);
    }
    template<unsigned_integral T>
    constexpr static_modint(T v){
        _v = (uint)(v % umod());
    }
    constexpr unsigned int val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    constexpr mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr mint& operator*=(const mint& rhs) {
        ull z = _v;
        z *= rhs._v;
        _v = (uint)(z % umod());
        return *this;
    }
    constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    constexpr mint operator+() const { return *this; }
    constexpr mint operator-() const { return mint() - *this; }
    constexpr mint pow(ll n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    constexpr mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    friend constexpr mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend constexpr mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend constexpr mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend constexpr mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend constexpr bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend constexpr bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    friend std::ostream &operator<<(std::ostream &os, const mint& p) {
        return os << p.val();
    }
    friend std::istream &operator>>(std::istream &is, mint &a) {
        long long t; is >> t;
        a = mint(t);
        return (is);
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = is_prime_flag<m>;
};


template <int id> struct dynamic_modint {
    using mint = dynamic_modint;
  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template<signed_integral T>
    dynamic_modint(T v){
        ll x = (ll)(v % (ll)(mod()));
        if (x < 0) x += mod();
        _v = (uint)(x);
    }
    template<unsigned_integral T>
    dynamic_modint(T v){
        _v = (uint)(v % mod());
    }
    uint val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = noya2::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    friend std::ostream &operator<<(std::ostream &os, const mint& p) {
        return os << p.val();
    }
    friend std::istream &operator>>(std::istream &is, mint &a) {
        long long t; is >> t;
        a = mint(t);
        return (is);
    }

  private:
    unsigned int _v;
    static barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> noya2::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

template<typename T>
concept Modint = requires (T &a){
    T::mod();
    a.inv();
    a.val();
    a.pow(declval<int>());
};

} // namespace noya2
#line 4 "c.cpp"
using mint = modint998244353;
#line 2 "/Users/noya2/Desktop/Noya2_library/math/binomial.hpp"

namespace noya2 {

template<typename mint>
struct binomial {
    binomial(int len = 300000){ extend(len); }
    static mint fact(int n){
        if (n < 0) return 0;
        while (n >= (int)_fact.size()) extend();
        return _fact[n];
    }
    static mint ifact(int n){
        if (n < 0) return 0;
        while (n >= (int)_fact.size()) extend();
        return _ifact[n];
    }
    static mint inv(int n){
        return ifact(n) * fact(n-1);
    }
    static mint C(int n, int r){
        if (!(0 <= r && r <= n)) return 0;
        return fact(n) * ifact(r) * ifact(n-r);
    }
    static mint P(int n, int r){
        if (!(0 <= r && r <= n)) return 0;
        return fact(n) * ifact(n-r);
    }
    inline mint operator()(int n, int r) { return C(n, r); }
    template<class... Cnts> static mint M(const Cnts&... cnts){
        return multinomial(0,1,cnts...);
    }
  private:
    static mint multinomial(const int& sum, const mint& div_prod){
        if (sum < 0) return 0;
        return fact(sum) * div_prod;
    }
    template<class... Tail> static mint multinomial(const int& sum, const mint& div_prod, const int& n1, const Tail&... tail){
        if (n1 < 0) return 0;
        return multinomial(sum+n1,div_prod*ifact(n1),tail...);
    }
    static vector<mint> _fact, _ifact;
    static void extend(int len = -1){
        if (_fact.empty()){
            _fact = _ifact = {1,1};
        }
        int siz = _fact.size();
        if (len == -1) len = siz * 2;
        len = min<int>(len, mint::mod()-1);
        if (len < siz) return ;
        _fact.resize(len+1), _ifact.resize(len+1);
        for (int i = siz; i <= len; i++) _fact[i] = _fact[i-1] * i;
        _ifact[len] = _fact[len].inv();
        for (int i = len; i > siz; i--) _ifact[i-1] = _ifact[i] * i;
    }
};
template<typename T>
std::vector<T>binomial<T>::_fact = vector<T>(2,T(1));
template<typename T>
std::vector<T>binomial<T>::_ifact = vector<T>(2,T(1));

} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/math/matrix_square.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/math/matrix_square.hpp"

namespace noya2{

template<typename T, int max_w>
struct Matrix_Square {
    array<T,max_w*max_w> m;
    inline static int w = max_w;
    static void set_w(int new_w){ w = new_w; }
    constexpr Matrix_Square (){ m = {}; }
    constexpr Matrix_Square (array<T,max_w*max_w> init) { m = init; }
    constexpr Matrix_Square (array<array<T,max_w>,max_w> init){
        for (int i = 0; i < w; i++){
            for (int j = 0; j < w; j++){
                m[id(i,j)] = init[i][j];
            }
        }
    }
    constexpr size_t size(){ return w; }
    using Matrix = Matrix_Square;
    constexpr Matrix &operator+= (const Matrix &r){
        for (int i = 0; i < w; ++i){
            for (int j = 0; j < w; ++j){
                m[id(i,j)] += r.m[id(i,j)];
            }
        }
        return *this;
    }
    constexpr Matrix &operator-= (const Matrix &r){
        for (int i = 0; i < w; ++i){
            for (int j = 0; j < w; ++j){
                m[id(i,j)] -= r.m[id(i,j)];
            }
        }
        return *this;
    }
    constexpr Matrix &operator*= (const Matrix &r){
        Matrix res = {};
        for (int i = 0; i < w; i++){
            for (int k = 0; k < w; k++){
                for (int j = 0; j < w; j++){
                    res.m[id(i,j)] += m[id(i,k)] * r.m[id(k,j)];
                }
            }
        }
        return *this = res;
    }
    constexpr Matrix operator+ (const Matrix &r) const {return Matrix(*this) += r;}
    constexpr Matrix operator- (const Matrix &r) const {return Matrix(*this) -= r;}
    constexpr Matrix operator* (const Matrix &r) const {return Matrix(*this) *= r;}
    constexpr bool operator== (const Matrix &r){
        for (int i = 0; i < w; ++i){
            for (int j = 0; j < w; ++j){
                if (m[id(i,j)] != r.m[id(i,j)]) return false;
            }
        }
        return true;
    }
    constexpr Matrix& operator*=(const T &r){
        for (int i = 0; i < w; ++i){
            for (int j = 0; j < w; ++j){
                m[id(i,j)] *= r;
            }
        }
        return *this;
    }
    constexpr Matrix& operator/=(const T &r){
        for (int i = 0; i < w; ++i){
            for (int j = 0; j < w; ++j){
                m[id(i,j)] /= r;
            }
        }
        return *this;
    }
    constexpr Matrix operator* (const T &r) const {return Matrix(*this) *= r;}
    constexpr Matrix operator/ (const T &r) const {return Matrix(*this) /= r;}
    friend constexpr Matrix operator+(const Matrix& lhs, const Matrix& rhs) {
        return Matrix(lhs) += rhs;
    }
    friend constexpr Matrix operator-(const Matrix& lhs, const Matrix& rhs) {
        return Matrix(lhs) -= rhs;
    }
    friend constexpr Matrix operator*(const Matrix& lhs, const Matrix& rhs) {
        return Matrix(lhs) *= rhs;
    }
    friend constexpr Matrix operator*(const Matrix& lhs, const T& r){
        return Matrix(lhs) *= r;
    }
    friend constexpr Matrix operator*(const T& l, const Matrix &rhs){
        return Matrix(rhs) *= l;
    }
    friend constexpr Matrix operator/(const Matrix& lhs, const T& r){
        return Matrix(lhs) /= r;
    }
    static constexpr Matrix e(){
        array<T,max_w*max_w> res = {};
        for (int i = 0; i < w; i++) res[id(i,i)] = T(1);
        return res;
    }
    constexpr Matrix pow(ll n) const {
        Matrix res = e(), x = *this;
        while (n){
            if (n&1) res *= x;
            x *= x;
            n >>= 1;
        }
        return res;
    }
    constexpr T determinant() const {
        auto B = this->m;
        T ret = 1;
        for (int i = 0; i < w; i++) {
            int idx = -1;
            for (int j = i; j < w; j++) {
                if (B[id(j,i)] != 0) {
                    idx = j;
                    break;
                }
            }
            if (idx == -1) return 0;
            if (i != idx) {
                ret *= T(-1);
                for (int j = 0; j < w; j++) swap(B[id(i,j)],B[id(idx,j)]);
            }
            ret *= B[id(i,i)];
            T inv = T(1) / B[id(i,i)];
            for (int j = 0; j < w; j++) {
                B[id(i,j)] *= inv;
            }
            for (int j = i + 1; j < w; j++) {
                T a = B[id(j,i)];
                if (a == 0) continue;
                for (int k = i; k < w; k++) {
                    B[id(j,k)] -= B[id(i,k)] * a;
                }
            }
        }
        return ret;
    }
    friend std::ostream &operator<<(std::ostream &os, const Matrix& p) {
        for (int i = 0; i < w; i++){
            if (i != 0) os << '\n';
            for (int j = 0; j < w; j++){
                if (j != 0) os << ' ';
                os << p.m[id(i,j)];
            }
        }
        return os;
    }
    friend std::istream &operator>>(std::istream &is, Matrix &p) {
        for (int i = 0; i < w; i++){
            for (int j = 0; j < w; j++){
                is >> p.m[id(i,j)];
            }
        }
        return (is);
    }
  private:
    static constexpr int id(int i, int j){ return i*max_w+j; }
};

} // namespace noya2
#line 7 "c.cpp"

void solve(){
    ll n, m; in(n,m);
    binomial<mint> bnm;
    array<array<mint,3>,3> init = {1,n,bnm(n,2)-n,1,n-1,bnm(n-1,2)-(n-2),1,n-2,((n-2)*(n-2)-3*(n-2)+4)/2};
    Matrix_Square<mint,3> mat(init);
    mat = mat.pow(m);
    out(mat.m[0]+mat.m[1]+mat.m[2]);
}

int main(){
    int t = 1; in(t);
    while (t--) { solve(); }
}
0