結果
問題 | No.2529 Treasure Hunter |
ユーザー | siganai |
提出日時 | 2023-11-03 22:28:39 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 5 ms / 2,000 ms |
コード長 | 11,002 bytes |
コンパイル時間 | 3,283 ms |
コンパイル使用メモリ | 224,240 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-25 20:53:19 |
合計ジャッジ時間 | 4,034 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 5 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 3 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
ソースコード
#line 1 "main.cpp" #pragma GCC target("avx,avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> #ifdef LOCAL #include <debug.hpp> #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (static_cast<void>(0)) #endif using namespace std; using ll = long long; using ld = long double; using pll = pair<ll, ll>; using pii = pair<int, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vpii = vector<pii>; using vpll = vector<pll>; using vs = vector<string>; template<class T> using pq = priority_queue<T, vector<T>, greater<T>>; #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(a,b,c,name,...) name #define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER) #define rep2(i, n) for (ll i = 0; i < (n); ++i) #define rep3(i, a, b) for (ll i = (a); i < (b); ++i) #define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) for(ll i = (n) - 1;i >= 0;i--) #define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--) #define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--) #define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define all1(i) begin(i) , end(i) #define all2(i,a) begin(i) , begin(i) + a #define all3(i,a,b) begin(i) + a , begin(i) + b #define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__) #define sum(...) accumulate(all(__VA_ARGS__),0LL) template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; } template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; } template<class T> auto min(const T& a){return *min_element(all(a));} template<class T> auto max(const T& a){return *max_element(all(a));} template<class... Ts> void in(Ts&... t); #define INT(...) int __VA_ARGS__; in(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; in(__VA_ARGS__) #define STR(...) string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define DBL(...) double __VA_ARGS__; in(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; in(__VA_ARGS__) #define VEC(type, name, size) vector<type> name(size); in(name) #define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name) ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;} ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; } ll GCD(ll a,ll b) { if(a == 0 || b == 0) return 0; if(a % b == 0) return b; else return GCD(b,a%b);} ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;} void Yes() {cout << "Yes\n";return;} void No() {cout << "No\n";return;} void YES() {cout << "YES\n";return;} void NO() {cout << "NO\n";return;} namespace IO{ #define VOID(a) decltype(void(a)) struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting; template<int I> struct P : P<I-1>{}; template<> struct P<0>{}; template<class T> void i(T& t){ i(t, P<3>{}); } void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; } template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; } template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); } template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);} template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});} #undef VOID } #define unpack(a) (void)initializer_list<int>{(a, 0)...} template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); } #undef unpack static const double PI = 3.1415926535897932; template <class F> struct REC { F f; REC(F &&f_) : f(forward<F>(f_)) {} template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }}; constexpr int mod = 998244353; //constexpr int mod = 1000000007; #line 2 "library/modint/LazyMontgomeryModint.hpp" template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1); static_assert(mod < (1 << 30)); static_assert((mod & 1) == 1); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; #line 90 "main.cpp" using mint = LazyMontgomeryModInt<mod>; #line 2 "library/matrix/matrix-array.hpp" template<typename T,int H,int W> struct Matrix { using Array = array<array<T,W>,H>; Array A; Matrix():A() { for(int i = 0;i < H;i++) { for(int j = 0;j < W;j++) { (*this)[i][j] = T(); } } } int height() const {return H;} int width() const {return W;} inline const array<T,W> &operator[](int k) const {return A[k];} inline array<T,W> &operator[](int k){return A[k];} static Matrix I() { assert(H == W); Matrix mat; for(int i = 0;i < H;i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { for(int i = 0;i < H;i++) { for(int j = 0;j < W;j++) { A[i][j] += B[i][j]; } } return (*this); } Matrix &operator-=(const Matrix &B) { for(int i = 0;i < H;i++) { for(int j = 0;j < W;j++) { A[i][j] -= B[i][j]; } } return (*this); } Matrix &operator*=(const Matrix &B) { assert(H == W); Matrix C; for(int i = 0;i < H;i++) { for(int k = 0;k < H;k++) { for(int j = 0;j < H;j++) { C[i][j] += A[i][k] * B[k][j]; } } } A.swap(C.A); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const{return (Matrix(*this) += B);} Matrix operator-(const Matrix &B) const{return (Matrix(*this) -= B);} Matrix operator*(const Matrix &B) const{return (Matrix(*this) *= B);} Matrix operator^(const long long k) const{return (Matrix(*this) ^= k);} bool operator==(const Matrix &B) const { for(int i = 0;i < H;i++) { for(int j = 0;j < W;j++) { if(A[i][j] != B[i][j]) return false; } } return true; } bool operator!=(const Matrix &B) const { for(int i = 0;i < H;i++) { for(int j = 0;j < W;j++) { if(A[i][j] != B[i][j]) return true; } } return false; } friend ostream &operator<<(ostream &os,const Matrix &p) { for(int i = 0;i < H;i++) { os << "["; for(int j = 0;j < W;j++) { os << p[i][j] << (j+1 == W ?"]\n":","); } } return(os); } T determinant(int n = -1) { if(n == -1) n = H; Matrix B(*this); T ret = 1; for(int i = 0;i < n;i++) { int idx = -1; for(int j = i;j < n;j++) { if(B[j][i] != 0) { idx = j; break; } } if(idx == -1) return 0; if(i != idx) { ret *= T(-1); swap(B[i],B[idx]); } ret *= B[i][i]; T inv = T(1) / B[i][i]; for(int j = 0;j < n;j++) { B[i][j] *= inv; } for(int j = i+1;j < n;j++) { T a = B[j][i]; if(a == 0) continue; for(int k = i;k < n;k++) { B[j][k] -= B[i][k] * a; } } } return(ret); } }; #line 92 "main.cpp" void solve() { INT(m,n); Matrix<mint,3,3> mat; mat[0][0] = 1; mat[0][1] = 1; mat[0][2] = 1; mat[1][0] = m; mat[1][1] = m - 1; mat[1][2] = m - 2; if(m > 3) { mat[2][0] = 1LL * m * (m - 1) / 2 - m; mat[2][1] = 1LL * m * (m - 1) / 2 - m - max(0,(m - 3)); mat[2][2] = 1LL * m * (m - 1) / 2 - m - max(0,(m - 3)) * 2 + 1; } mat ^= n; //debug(mat); mint ans; rep(i,3) ans += mat[i][0]; cout << ans << '\n'; } int main() { INT(TT); while(TT--) solve(); }