結果

問題 No.2529 Treasure Hunter
ユーザー akakimidoriakakimidori
提出日時 2023-11-03 22:40:20
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 4 ms / 2,000 ms
コード長 15,044 bytes
コンパイル時間 14,919 ms
コンパイル使用メモリ 385,088 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-25 21:04:31
合計ジャッジ時間 14,237 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 4 ms
6,812 KB
testcase_02 AC 1 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 1 ms
6,940 KB
testcase_05 AC 1 ms
6,940 KB
testcase_06 AC 1 ms
6,944 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 1 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 1 ms
6,944 KB
testcase_13 AC 1 ms
6,944 KB
testcase_14 AC 1 ms
6,944 KB
testcase_15 AC 1 ms
6,944 KB
testcase_16 AC 1 ms
6,940 KB
testcase_17 AC 1 ms
6,944 KB
testcase_18 AC 1 ms
6,940 KB
testcase_19 AC 1 ms
6,940 KB
testcase_20 AC 1 ms
6,944 KB
testcase_21 AC 1 ms
6,940 KB
testcase_22 AC 1 ms
6,944 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: associated constant `IS_PRIME` is never used
   --> src/main.rs:324:11
    |
306 | impl<const M: u32> ConstantModulo<{ M }> {
    | ---------------------------------------- associated constant in this implementation
...
324 |     const IS_PRIME: () = assert!(is_prime(M));
    |           ^^^^^^^^
    |
    = note: `#[warn(dead_code)]` on by default

ソースコード

diff #

use std::io::Write;

fn run() {
    input! {
        t: usize,
        ask: [(usize, usize); t],
    }
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    for (n, m) in ask {
        type Mat = Matrix<M, 3>;
        let mut mat = Mat::zero();
        for i in 0..3 {
            for j in 0..3 {
                let mat = &mut mat[i][j];
                if j == 0 {
                    *mat = M::one();
                    continue;
                }
                if n < 4 && (i == 2 || j == 2) {
                    continue;
                }
                if j == 1 {
                    *mat = M::from(n);
                } else {
                    *mat = M::from(n - 3 + (n - 3) * (n - 2) / 2);
                }
                if i == 1 {
                    if j == 1 {
                        *mat -= M::one();
                    } else {
                        *mat -= M::from(n - 3);
                    }
                } else if i == 2 {
                    if j == 1 {
                        *mat -= M::new(2);
                    } else {
                        *mat -= M::from(2 * (n - 3)) - M::one();
                    }
                }
            }
        }
        let mut t = Mat::one();
        let mut r = mat;
        let mut m = m;
        while m > 0 {
            if m & 1 == 1 {
                t = t * r;
            }
            r = r * r;
            m >>= 1;
        }
        let ans = t[0].iter().fold(M::zero(), |s, a| s + *a);
        writeln!(out, "{}", ans).ok();
    }
}

fn main() {
    run();
}

#[derive(Clone, Copy)]
pub struct Matrix<T, const K: usize>([[T; K]; K]);

impl<T, const K: usize> Matrix<T, K> {
    fn new(a: [[T; K]; K]) -> Self {
        Self(a)
    }
}

impl<T, const K: usize> Zero for Matrix<T, K>
where
    T: Zero + Copy,
{
    fn zero() -> Self {
        Self::new([[T::zero(); K]; K])
    }
    fn is_zero(&self) -> bool {
        self.0.iter().flatten().all(|a| a.is_zero())
    }
}

impl<T, const K: usize> Add for Matrix<T, K>
where
    T: Zero + Copy,
{
    type Output = Self;
    fn add(self, rhs: Self) -> Self {
        let mut res = Self::zero();
        for ((res, a), b) in res.0.iter_mut().zip(self.0.iter()).zip(rhs.0.iter()) {
            for ((res, a), b) in res.iter_mut().zip(a.iter()).zip(b.iter()) {
                *res = *a + *b;
            }
        }
        res
    }
}

impl<T, const K: usize> One for Matrix<T, K>
where
    T: Zero + One + Copy,
{
    fn one() -> Self {
        let mut res = Self::zero();
        for (i, res) in res.0.iter_mut().enumerate() {
            res[i] = T::one();
        }
        res
    }
    fn is_one(&self) -> bool {
        self.0
            .iter()
            .enumerate()
            .all(|(i, a)| a.iter().enumerate().all(|(j, a)| a.is_one() == (i == j)))
    }
}

impl<T, const K: usize> Mul for Matrix<T, K>
where
    T: Zero + One + Copy,
{
    type Output = Self;
    fn mul(self, rhs: Self) -> Self {
        let mut res = Self::zero();
        for (res, a) in res.0.iter_mut().zip(self.0.iter()) {
            for (a, b) in a.iter().zip(rhs.0.iter()) {
                for (res, b) in res.iter_mut().zip(b.iter()) {
                    *res = *res + *a * *b;
                }
            }
        }
        res
    }
}

impl<T, const K: usize> Index<usize> for Matrix<T, K> {
    type Output = [T; K];
    fn index(&self, index: usize) -> &Self::Output {
        &self.0[index]
    }
}

impl<T, const K: usize> IndexMut<usize> for Matrix<T, K> {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.0[index]
    }
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------

pub trait Zero: Sized + Add<Self, Output = Self> {
    fn zero() -> Self;
    fn is_zero(&self) -> bool;
}

pub trait One: Sized + Mul<Self, Output = Self> {
    fn one() -> Self;
    fn is_one(&self) -> bool;
}

pub trait Ring: Zero + One + Sub<Output = Self> {}

pub trait Field: Ring + Div<Output = Self> {}

impl<T: Modulo> Zero for ModInt<T> {
    fn zero() -> Self {
        Self::zero()
    }
    fn is_zero(&self) -> bool {
        self.is_zero()
    }
}

impl<T: Modulo> One for ModInt<T> {
    fn one() -> Self {
        Self::one()
    }
    fn is_one(&self) -> bool {
        self.is_one()
    }
}

pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
    let mut t = 1;
    while n > 0 {
        if n & 1 == 1 {
            t = (t as u64 * r as u64 % m as u64) as u32;
        }
        r = (r as u64 * r as u64 % m as u64) as u32;
        n >>= 1;
    }
    t
}

pub const fn primitive_root(p: u32) -> u32 {
    let mut m = p - 1;
    let mut f = [1; 30];
    let mut k = 0;
    let mut d = 2;
    while d * d <= m {
        if m % d == 0 {
            f[k] = d;
            k += 1;
        }
        while m % d == 0 {
            m /= d;
        }
        d += 1;
    }
    if m > 1 {
        f[k] = m;
        k += 1;
    }
    let mut g = 1;
    while g < p {
        let mut ok = true;
        let mut i = 0;
        while i < k {
            ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
            i += 1;
        }
        if ok {
            break;
        }
        g += 1;
    }
    g
}

pub const fn is_prime(n: u32) -> bool {
    if n <= 1 {
        return false;
    }
    let mut d = 2;
    while d * d <= n {
        if n % d == 0 {
            return false;
        }
        d += 1;
    }
    true
}

use std::marker::*;
use std::ops::*;

pub trait Modulo {
    fn modulo() -> u32;
    fn build(v: u32) -> u32;
    fn reduce(v: u64) -> u32;
}

pub struct ConstantModulo<const M: u32>;

impl<const M: u32> ConstantModulo<{ M }> {
    const ORDER: usize = (M - 1).trailing_zeros() as usize;
    const PRIMITIVE_ROOT: u32 = primitive_root(M);
    const ZETA: u32 = pow_mod(Self::PRIMITIVE_ROOT, (M - 1) >> Self::ORDER, M);
    const REM: u32 = {
        let mut t = 1u32;
        let mut s = !M + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t = t.wrapping_mul(s);
            }
            s = s.wrapping_mul(s);
            n >>= 1;
        }
        t
    };
    const INI: u64 = ((1u128 << 64) % M as u128) as u64;
    const IS_PRIME: () = assert!(is_prime(M));
}

impl<const M: u32> Modulo for ConstantModulo<{ M }> {
    fn modulo() -> u32 {
        M
    }
    fn build(v: u32) -> u32 {
        Self::reduce(v as u64 * Self::INI)
    }
    fn reduce(x: u64) -> u32 {
        debug_assert!(x < (Self::modulo() as u64) << 32);
        let b = (x as u32 * Self::REM) as u64;
        let t = x + b * M as u64;
        let mut c = (t >> 32) as u32;
        if c >= M {
            c -= M;
        }
        c as u32
    }
}

pub trait NTTFriendly {
    fn order() -> usize;
    fn zeta() -> u32;
}

impl<const M: u32> NTTFriendly for ConstantModulo<{ M }> {
    fn order() -> usize {
        Self::ORDER
    }
    fn zeta() -> u32 {
        Self::ZETA
    }
}

pub struct ModInt<T>(u32, PhantomData<fn() -> T>);

impl<T> Clone for ModInt<T> {
    fn clone(&self) -> Self {
        Self::build(self.0)
    }
}

impl<T> Copy for ModInt<T> {}

impl<T: Modulo> Add for ModInt<T> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        Self::build(v)
    }
}

impl<T: Modulo> Sub for ModInt<T> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += T::modulo();
        }
        Self::build(v)
    }
}

impl<T: Modulo> Mul for ModInt<T> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        Self::build(T::reduce(self.0 as u64 * rhs.0 as u64))
    }
}

impl<T: Modulo> AddAssign for ModInt<T> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<T: Modulo> SubAssign for ModInt<T> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<T: Modulo> MulAssign for ModInt<T> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<T: Modulo> Neg for ModInt<T> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        if self.is_zero() {
            Self::zero()
        } else {
            Self::build(T::modulo() - self.0)
        }
    }
}

impl<T: Modulo> std::fmt::Display for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<T: Modulo> std::fmt::Debug for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<T: Modulo> std::str::FromStr for ModInt<T> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<T: Modulo> From<usize> for ModInt<T> {
    fn from(v: usize) -> Self {
        Self::new_unchecked((v % T::modulo() as usize) as u32)
    }
}

impl<T> ModInt<T> {
    fn build(v: u32) -> Self {
        ModInt(v, PhantomData)
    }
    pub fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<T: Modulo> ModInt<T> {
    pub fn new_unchecked(v: u32) -> Self {
        Self::build(T::build(v))
    }
    pub fn new(v: u32) -> Self {
        Self::new_unchecked(v % T::modulo())
    }
    pub fn zero() -> Self {
        Self::new_unchecked(0)
    }
    pub fn one() -> Self {
        Self::new_unchecked(1)
    }
    pub fn get(&self) -> u32 {
        T::reduce(self.0 as u64)
    }
    pub fn is_one(&self) -> bool {
        self.get() == 1
    }
    pub fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::one();
        let mut r = *self;
        while n > 0 {
            if n & 1 == 1 {
                t *= r;
            }
            r *= r;
            n >>= 1;
        }
        t
    }
    pub fn inv(&self) -> Self {
        assert!(!self.is_zero());
        self.pow((T::modulo() - 2) as u64)
    }
    pub fn fact(n: usize) -> Self {
        (1..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + Mul<Output = T> + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (c, b) in res[i..].iter_mut().zip(rhs) {
                *c = *c + *a * *b;
            }
        }
        res
    }
}

const PRIME: u32 = 998_244_353;

type S = ConstantModulo<PRIME>;
type M = ModInt<S>;
0