結果

問題 No.2529 Treasure Hunter
ユーザー GandalfrGandalfr
提出日時 2023-11-03 23:32:00
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 28,214 bytes
コンパイル時間 2,228 ms
コンパイル使用メモリ 215,528 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-25 21:32:16
合計ジャッジ時間 3,015 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 WA -
testcase_02 AC 4 ms
6,944 KB
testcase_03 AC 5 ms
6,940 KB
testcase_04 AC 5 ms
6,948 KB
testcase_05 AC 4 ms
6,940 KB
testcase_06 AC 3 ms
6,944 KB
testcase_07 AC 4 ms
6,940 KB
testcase_08 WA -
testcase_09 AC 5 ms
6,940 KB
testcase_10 AC 4 ms
6,940 KB
testcase_11 AC 4 ms
6,940 KB
testcase_12 AC 2 ms
6,944 KB
testcase_13 AC 1 ms
6,940 KB
testcase_14 AC 1 ms
6,944 KB
testcase_15 AC 1 ms
6,944 KB
testcase_16 AC 1 ms
6,940 KB
testcase_17 AC 2 ms
6,944 KB
testcase_18 AC 1 ms
6,940 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 1 ms
6,940 KB
testcase_22 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "playspace/main.cpp"
#include <bits/stdc++.h>
#line 3 "library/gandalfr/math/matrix.hpp"

#line 8 "library/gandalfr/math/matrix.hpp"

template <class T> class matrix {
  private:
    int H, W;
    std::valarray<std::valarray<T>> table;

    enum rowtrans_operation_name { SCALE, SWAP, ADD };
    struct rowtrans_operation {
        int op, tar, res;
        T scl;
    };
    using operations_history = std::vector<rowtrans_operation>;

  public:
    matrix() = default;
    matrix(int _H, int _W, T val = 0)
        : H(_H), W(_W), table(std::valarray<T>(val, _W), _H) {}
    matrix(const std::vector<std::vector<T>> &vv)
        : H(vv.size()), W(vv[0].size()), table(std::valarray<T>(W), H) {
        for (int i = 0; i < H; i++)
            for (int j = 0; j < W; j++)
                table[i][j] = vv[i][j];
    }
    matrix(const std::valarray<std::valarray<T>> &vv)
        : H(vv.size()), W(vv[0].size()), table(vv) {}

    /**
     * @brief 行列をリサイズする。
     * @param val 拡張部分の値
     */
    void resize(int _H, int _W, T val = 0) {
        H = _H, W = _W;
        table.resize(_H, std::valarray<T>(val, _H));
    }
    int size_H() const { return H; }
    int size_W() const { return W; }
    void transpose() {
        matrix<T> ret(W, H);
        for (int i = 0; i < H; i++)
            for (int j = 0; j < W; j++)
                ret.table[j][i] = table[i][j];
        *this = ret;
    }

    /**
     * @brief 第 i 行に対して行単位で代入を行う
     * @example A.row_assign(3, {1,2,3});
     */
    void row_assign(int i, const std::valarray<T> &row) {
        assert(0 <= i && i < H);
        assert(W == (int)row.size());
        table[i] = row;
    }

    /**
     * @brief 第 i 行, 第 j 行を入れ替える
     */
    void row_swap(int i, int j) {
        assert(0 <= i && i < H);
        assert(0 <= j && j < H);
        table[i].swap(table[j]);
    }

    /**
     * @attention O(n^3)
     * @attention 整数型では正しく計算できない。double や fraction を使うこと。
     * @attention 枢軸選びをしていないので double では誤差が出るかも。
     */
    operations_history sweep_method() {
        operations_history hist;
        for (int h = 0, w = 0; h < H && w < W; w++) {
            if (table[h][w] == 0) {
                for (int piv = h + 1; piv < H; piv++) {
                    if (table[piv][w] != 0) {
                        hist.push_back({SWAP, h, piv, 0});
                        row_swap(h, piv);
                        break;
                    }
                }
                if (table[h][w] == 0) {
                    continue;
                }
            }
            T inv = 1 / table[h][w];
            hist.push_back({SCALE, -1, w, inv});
            table[h] *= inv;
            for (int j = h + 1; j < H; j++) {
                hist.push_back({ADD, h, j, -table[j][w]});
                table[j] -= table[h] * table[j][w];
            }
            h++;
        }
        return hist;
    }

    int rank() const {
        auto U(*this);
        U.sweep_method();
        int r = 0;
        for (int i = 0; i < H; ++i) {
            for (int j = i; j < W; ++j) {
                if (U.table[i][j] != 0) {
                    r++;
                    break;
                }
            }
        }
        return r;
    }

    T determinant() const {
        assert(H == W);
        matrix<T> U(*this);
        T det = 1;
        auto hist = U.sweep_method();
        if (U.table[H - 1][H - 1] == 0)
            return 0;
        for (auto &[op, tar, res, scl] : hist) {
            switch (op) {
            case SCALE:
                det /= scl;
                break;
            case SWAP:
                det *= -1;
                break;
            }
        }
        return det;
    }

    std::vector<T> solve_system_of_equations(const std::vector<T> &y) {
        assert(H == W);
        std::vector<T> x(y);
        matrix<T> U(*this);
        auto hist = U.sweep_method();
        if (U.table[H - 1][H - 1] == 0)
            return {};

        for (auto &[op, tar, res, scl] : hist) {
            switch (op) {
            case SCALE:
                x[res] *= scl;
                break;
            case SWAP:
                std::swap(x[tar], x[res]);
                break;
            case ADD:
                x[res] += x[tar] * scl;
                break;
            }
        }

        for (int i = H - 1; i >= 0; --i) {
            for (int j = 0; j < i; ++j) {
                x[j] -= U.table[j][i] * x[i];
            }
        }
        return x;
    }

    matrix<T> inverse() const {
        assert(H == W);
        matrix<T> INV(matrix<T>::E(H)), U(*this);
        auto hist = U.sweep_method();
        if (U.table[H - 1][H - 1] == 0)
            return matrix<T>(0, 0);

        for (auto &[op, tar, res, scl] : hist) {
            switch (op) {
            case SCALE:
                INV.table[res] *= scl;
                break;
            case SWAP:
                std::swap(INV.table[tar], INV.table[res]);
                break;
            case ADD:
                INV.table[res] += INV.table[tar] * scl;
                break;
            }
        }

        for (int i = H - 1; i >= 0; --i) {
            for (int j = 0; j < i; ++j) {
                INV.table[j] -= INV.table[i] * U.table[j][i];
            }
        }
        return INV;
    }

    void print() const {
        for (int i = 0; i < H; i++) {
            for (int j = 0; j < W; j++) {
                std::cout << table[i][j] << (j == W - 1 ? "" : " ");
            }
            std::cout << std::endl;
        }
    }

    matrix<T> &operator+=(const matrix<T> &a) {
        this->table += a.table;
        return *this;
    }
    matrix<T> &operator-=(const matrix<T> &a) {
        this->table -= a.table;
        return *this;
    }
    matrix<T> &operator*=(const T &a) {
        this->table *= a;
        return *this;
    }
    matrix<T> &operator*=(const matrix<T> &a) {
        assert(W == a.H);
        matrix<T> a_t(a), ret(H, a.W);
        a_t.transpose();
        for (int i = 0; i < H; i++) {
            for (int j = 0; j < a_t.H; j++) {
                ret.table[i][j] = (table[i] * a_t.table[j]).sum();
            }
        }
        return *this = ret;
    }
    matrix<T> &operator/=(const T &a) {
        this->table /= a;
        return *this;
    }
    /**
     * @brief 行列の冪乗。
     * @param n 指数
     * @attention n が 0 なら単位行列。
     * @attention 演算子の優先度に注意。
     */
    matrix<T> operator^=(long long n) {
        assert(H == W);
        if (n == 0)
            return *this = E(H);
        n--;
        matrix<T> x(*this);
        while (n) {
            if (n & 1)
                *this *= x;
            x *= x;
            n >>= 1;
        }
        return *this;
    }

    matrix<T> operator+() const { return *this; }
    matrix<T> operator-() const { return matrix<T>(*this) *= -1; }
    matrix<T> operator+(const matrix<T> &a) const {
        return matrix<T>(*this) += a;
    }
    matrix<T> operator-(const matrix<T> &a) const {
        return matrix<T>(*this) -= a;
    }
    matrix<T> operator*(const T &a) { return matrix<T>(*this) *= a; }
    matrix<T> operator*(const matrix<T> &a) const {
        return matrix<T>(*this) *= a;
    }
    matrix<T> operator/(const T &a) const { return matrix<T>(*this) /= a; }
    matrix<T> operator^(long long n) const { return matrix<T>(*this) ^= n; }
    friend std::istream &operator>>(std::istream &is, matrix<T> &mt) {
        for (auto &arr : mt.table)
            for (auto &x : arr)
                is >> x;
        return is;
    }
    const T &operator()(int h, int w) const {
        assert(0 <= h && h < H && 0 <= w && w <= W);
        return table[h][w];
    }
    T &operator()(int h, int w) {
        assert(0 <= h && h < H && 0 <= w && w <= W);
        return table[h][w];
    }

    template <typename S> bool operator==(const matrix<S> &other) {
        if (size_H() != other.size_H() || size_W() != other.size_W())
            return false;
        for (int h = 0; h < H; ++h) {
            for (int w = 0; w < W; ++w) {
                if (table[h][w] != other.table[h][w])
                    return false;
            }
        }
        return true;
    }
    template <typename S> bool operator!=(const matrix<S> &other) {
        return !operator==(other);
    }

    /**
     * @brief サイズ n の単位行列。
     */
    static matrix<T> E(int N) {
        matrix<T> ret(N, N);
        for (int i = 0; i < N; i++)
            ret.table[i][i] = 1;
        return ret;
    }
};
#line 8 "library/gandalfr/other/io_supporter.hpp"

#line 1 "library/atcoder/modint.hpp"



#line 6 "library/atcoder/modint.hpp"
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#line 1 "library/atcoder/internal_math.hpp"



#line 5 "library/atcoder/internal_math.hpp"

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "library/atcoder/internal_type_traits.hpp"



#line 7 "library/atcoder/internal_type_traits.hpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 14 "library/atcoder/modint.hpp"

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#line 10 "library/gandalfr/other/io_supporter.hpp"

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
    for (int i = 0; i < (int)v.size(); i++)
        os << v[i] << (i + 1 != (int)v.size() ? " " : "");
    return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::set<T> &st) {
    for (const T &x : st) {
        std::cout << x << " ";
    }
    return os;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::multiset<T> &st) {
    for (const T &x : st) {
        std::cout << x << " ";
    }
    return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::deque<T> &dq) {
    for (const T &x : dq) {
        std::cout << x << " ";
    }
    return os;
}
template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &p) {
    os << p.first << ' ' << p.second;
    return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, std::queue<T> &q) {
    int sz = q.size();
    while (--sz) {
        os << q.front() << ' ';
        q.push(q.front());
        q.pop();
    }
    os << q.front();
    q.push(q.front());
    q.pop();
    return os;
}

namespace atcoder {
template <int m>
std::ostream &operator<<(std::ostream &os, const static_modint<m> &mi) {
    os << mi.val();
    return os;
}
template <int m>
std::ostream &operator<<(std::ostream &os, const dynamic_modint<m> &mi) {
    os << mi.val();
    return os;
}

}

template <typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
    for (T &in : v)
        is >> in;
    return is;
}
template <typename T1, typename T2>
std::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {
    is >> p.first >> p.second;
    return is;
}
namespace atcoder {
template <int m>
std::istream &operator>>(std::istream &is, static_modint<m> &mi) {
    long long n;
    is >> n;
    mi = n;
    return is;
}
template <int m>
std::istream &operator>>(std::istream &is, dynamic_modint<m> &mi) {
    long long n;
    is >> n;
    mi = n;
    return is;
}

}
#line 4 "playspace/main.cpp"
using namespace std;
using ll = long long;
const int INF = 1001001001;
const ll INFLL = 1001001001001001001;
const ll MOD  = 1000000007;
const ll _MOD = 998244353;
#define rep(i, j, n) for(ll i = (ll)(j); i < (ll)(n); i++)
#define rrep(i, j, n) for(ll i = (ll)(n-1); i >= (ll)(j); i--)
#define all(a) (a).begin(),(a).end()
#define debug(a) std::cerr << #a << ": " << a << std::endl
#define LF cout << endl
template<typename T1, typename T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template<typename T1, typename T2> inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
void Yes(bool ok){ std::cout << (ok ? "Yes" : "No") << std::endl; }

int main(void){

    int T;
    cin >> T;
    while (T--) {
        int N, M;
        cin >> N >> M;
        using mint = atcoder::modint998244353;
        matrix<mint> mt(3, 3);
        mt.row_assign(0, {1, N, (mint)N * (N - 3) / 2});
        mt.row_assign(1, {1, N - 1, (mint)(N - 2) * (N - 3) / 2});
        mt.row_assign(2, {1, N - 2, 1 + (mint)(N - 3) * (N - 4) / 2});
        matrix<mint> base(1, 3), sum(3, 1, 1);
        base.row_assign(0, {1, N, (mint)N * (N - 3) / 2});

        cout << (base * (mt ^ (M - 1)) * sum)(0, 0) << endl;
    }


}
0