結果
| 問題 |
No.1216 灯籠流し/Lanterns
|
| コンテスト | |
| ユーザー |
hashiryo
|
| 提出日時 | 2023-11-04 14:34:17 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 17,640 bytes |
| コンパイル時間 | 3,584 ms |
| コンパイル使用メモリ | 238,088 KB |
| 最終ジャッジ日時 | 2025-02-17 19:12:56 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 2 WA * 9 RE * 37 |
ソースコード
#include <bits/stdc++.h>
// clang-format off
std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
std::ostream&operator<<(std::ostream&os,const __uint128_t &v){if(!v)os<<"0";__uint128_t tmp=v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
#define checkpoint() (void(0))
#define debug(...) (void(0))
#define debugArray(x,n) (void(0))
#define debugMatrix(x,h,w) (void(0))
// clang-format on
#ifdef __LOCAL
// clang-format off
#undef checkpoint
#undef debug
#undef debugArray
#undef debugMatrix
template<class T>std::ostream &operator<<(std::ostream&,const std::vector<T>&);
template<class T>std::ostream &operator<<(std::ostream&,const std::set<T>&);
template<class T,class U>std::ostream &operator<<(std::ostream&os,const std::pair<T,U>&x){return os<<"("<<x.first<<", "<<x.second<<")";}
template<class T,std::size_t _Nm>std::ostream&operator<<(std::ostream &os,const std::array<T, _Nm> &arr) {os<<'['<<arr[0];for(std::size_t _=1;_<_Nm;++_)os<<", "<<arr[_];return os<<']';}
template<class Tup,std::size_t... I>void print(std::ostream&os,const Tup &x,std::index_sequence<I...>){(void)(int[]){(os<<std::get<I>(x)<<", ",0)...};}
template<class... Args>std::ostream &operator<<(std::ostream&os,const std::tuple<Args...> &x) {static constexpr std::size_t N = sizeof...(Args);os<<"(";if constexpr(N>=2)print(os,x,std::make_index_sequence<N-1>());return os<<std::get<N-1>(x)<<")";}
template<class T>std::ostream &operator<<(std::ostream&os,const std::vector<T>&vec){os<<'[';for(int _=0,__= vec.size();_<__;++_)os<<(_ ?", ":"")<<vec[_];return os<<']';}
template<class T>std::ostream &operator<<(std::ostream&os,const std::set<T>&s){os<<'{';int _=0;for(const auto &x:s)os<<(_++ ? ", " : "")<<x; return os << '}';}
const std::string COLOR_RESET="\033[0m",BRIGHT_GREEN="\033[1;32m",BRIGHT_RED="\033[1;31m",BRIGHT_CYAN="\033[1;36m",NORMAL_CROSSED="\033[0;9;37m",ITALIC="\033[3m",BOLD="\033[1m",RED_BACKGROUND="\033[1;41m",NORMAL_FAINT="\033[0;2m";
#define func_LINE_FILE NORMAL_FAINT<<" in "<<BOLD<<__func__<<NORMAL_FAINT<<ITALIC<<" (L"<<__LINE__<<") "<< __FILE__<<COLOR_RESET
#define checkpoint() std::cerr<<BRIGHT_RED<<"< check point! >"<<func_LINE_FILE<<'\n'
template <class T, class... Args> void debug__(const std::string &s, const T &a, const Args &...x) {std::cerr << BRIGHT_CYAN << s << COLOR_RESET << " = ";std::cerr << a;(std::cerr << ... << (std::cerr << ", ", x));std::cerr << func_LINE_FILE << std::endl;}
#define debug(...) debug__(#__VA_ARGS__,__VA_ARGS__)
#define debugArray(x, n) do{std::cerr<<BRIGHT_CYAN<<#x<<COLOR_RESET<<" = ["<<x[0];for(int _=1;_<(int)(n);++_)std::cerr<<", "<<x[_];std::cerr<<"]"<<func_LINE_FILE<<'\n';}while(0)
#define debugMatrix(x, h, w) do{std::cerr<<BRIGHT_CYAN<<#x<<"\n"<<COLOR_RESET<<"= ";for(int _=0;(_)<(int)(h);++_){std::cerr<<((_?" [":"[["));for(int __=0;__<(int)(w);++__)std::cerr<<((__?", ":""))<<x[_][__];std::cerr<<"]"<<(_+1==(int)(h)?"]":",\n");}std::cerr<<func_LINE_FILE<<'\n';}while(0)
#endif
// clang-format on
template <class T> static constexpr bool tuple_like_v= false;
template <class... Args> static constexpr bool tuple_like_v<std::tuple<Args...>> = true;
template <class T, class U> static constexpr bool tuple_like_v<std::pair<T, U>> = true;
template <class T, size_t K> static constexpr bool tuple_like_v<std::array<T, K>> = true;
template <class T> auto to_tuple(const T &t) {
if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t);
}
template <class T> auto forward_tuple(const T &t) {
if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t);
}
template <class T> static constexpr bool array_like_v= false;
template <class T, size_t K> static constexpr bool array_like_v<std::array<T, K>> = true;
template <class T, class U> static constexpr bool array_like_v<std::pair<T, U>> = std::is_convertible_v<T, U>;
template <class T> static constexpr bool array_like_v<std::tuple<T>> = true;
template <class T, class U, class... Args> static constexpr bool array_like_v<std::tuple<T, U, Args...>> = array_like_v<std::tuple<T, Args...>> && std::is_convertible_v<U, T>;
template <class T> auto to_array(const T &t) {
if constexpr (array_like_v<T>) return std::apply([](auto &&...x) { return std::array{x...}; }, t);
}
template <class T> using to_tuple_t= decltype(to_tuple(T()));
template <class T> using to_array_t= decltype(to_array(T()));
template <class pos_t, class M> class SegmentTree_2D {
public:
using T= typename M::T;
using Pos= std::array<pos_t, 2>;
std::vector<pos_t> xs;
std::vector<Pos> yxs;
std::vector<int> id, tol;
std::vector<T> val;
template <class P> using canbe_Pos= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t>>;
template <class P> using canbe_PosV= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t, T>>;
template <class P, class U> static constexpr bool canbe_Pos_and_T_v= std::conjunction_v<canbe_Pos<P>, std::is_convertible<U, T>>;
int sz;
inline int x2i(pos_t x) const { return std::lower_bound(xs.begin(), xs.end(), x) - xs.begin(); }
inline int y2i(pos_t y) const {
return std::lower_bound(yxs.begin(), yxs.end(), Pos{y, 0}, [](const Pos &a, const Pos &b) { return a[0] < b[0]; }) - yxs.begin();
}
inline int xy2i(pos_t x, pos_t y) const {
Pos p{y, x};
auto it= std::lower_bound(yxs.begin(), yxs.end(), p);
return assert(p == *it), it - yxs.begin();
}
template <bool z, size_t k, class P> inline auto get_(const P &p) {
if constexpr (z) return std::get<k>(p);
else return std::get<k>(p.first);
}
template <bool z, class XYW> inline void build(const XYW *xyw, int n, const T &v= M::ti()) {
xs.resize(n), yxs.resize(n);
for (int i= n; i--;) xs[i]= get_<z, 0>(xyw[i]);
std::sort(xs.begin(), xs.end()), xs.erase(std::unique(xs.begin(), xs.end()), xs.end()), id.resize((sz= 1 << (32 - __builtin_clz(xs.size()))) * 2 + 1);
std::vector<int> ix(n), ord(n);
for (int i= n; i--;) ix[i]= x2i(get_<z, 0>(xyw[i]));
for (int i: ix)
for (i+= sz; i; i>>= 1) ++id[i + 1];
for (int i= 1, e= sz * 2; i < e; ++i) id[i + 1]+= id[i];
val.assign(id.back() * 2, M::ti()), tol.resize(id[sz] + 1), std::iota(ord.begin(), ord.end(), 0), std::sort(ord.begin(), ord.end(), [&](int i, int j) { return get_<z, 1>(xyw[i]) == get_<z, 1>(xyw[j]) ? get_<z, 0>(xyw[i]) < get_<z, 0>(xyw[j]) : get_<z, 1>(xyw[i]) < get_<z, 1>(xyw[j]); });
for (int i= n; i--;) yxs[i]= {get_<z, 1>(xyw[ord[i]]), get_<z, 0>(xyw[ord[i]])};
std::vector<int> ptr= id;
for (int r: ord)
for (int i= ix[r] + sz, j= -1; i; j= i, i>>= 1) {
int p= ptr[i]++;
if constexpr (z) {
if constexpr (std::tuple_size_v<XYW> == 3) val[id[i + 1] + p]= std::get<2>(xyw[r]);
else val[id[i + 1] + p]= v;
} else val[id[i + 1] + p]= xyw[r].second;
if (j != -1) tol[p + 1]= !(j & 1);
}
for (int i= 1, e= id[sz]; i < e; ++i) tol[i + 1]+= tol[i];
for (int i= 0, e= sz * 2; i < e; ++i) {
auto dat= val.begin() + id[i] * 2;
for (int j= id[i + 1] - id[i]; --j > 0;) dat[j]= M::op(dat[j * 2], dat[j * 2 + 1]);
}
}
inline T fold(int i, int a, int b) const {
int n= id[i + 1] - id[i];
T ret= M::ti();
auto dat= val.begin() + id[i] * 2;
for (a+= n, b+= n; a < b; a>>= 1, b>>= 1) {
if (a & 1) ret= M::op(ret, dat[a++]);
if (b & 1) ret= M::op(dat[--b], ret);
}
return ret;
}
template <bool z> inline void seti(int i, int j, T v) {
auto dat= val.begin() + id[i] * 2;
j+= id[i + 1] - id[i];
if constexpr (z) dat[j]= v;
else dat[j]= M::op(dat[j], v);
for (; j;) j>>= 1, dat[j]= M::op(dat[2 * j], dat[2 * j + 1]);
}
template <bool z> inline void set_(pos_t x, pos_t y, T v) {
for (int i= 1, p= xy2i(x, y);;) {
if (seti<z>(i, p - id[i], v); i >= sz) break;
if (int lc= tol[p] - tol[id[i]], rc= (p - id[i]) - lc; tol[p + 1] - tol[p]) p= id[2 * i] + lc, i= 2 * i;
else p= id[2 * i + 1] + rc, i= 2 * i + 1;
}
}
public:
template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const P *p, size_t n) { build<1>(p, n); }
template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const std::vector<P> &p): SegmentTree_2D(p.data(), p.size()) {}
template <class P, typename= std::enable_if_t<canbe_Pos<P>::value>> SegmentTree_2D(const std::set<P> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const P *p, size_t n, const U &v) { build<1>(p, n, v); }
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<P> &p, const U &v): SegmentTree_2D(p.data(), p.size(), v) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::set<P> &p, const U &v): SegmentTree_2D(std::vector(p.begin(), p.end()), v) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::pair<P, U> *p, size_t n) { build<0>(p, n); }
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<std::pair<P, U>> &p): SegmentTree_2D(p.data(), p.size()) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::map<P, U> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
// [l,r) x [u,d)
T fold(pos_t l, pos_t r, pos_t u, pos_t d) const {
T ret= M::ti();
int L= x2i(l), R= x2i(r);
auto dfs= [&](auto &dfs, int i, int a, int b, int c, int d) -> void {
if (c == d || R <= a || b <= L) return;
if (L <= a && b <= R) return ret= M::op(ret, fold(i, c, d)), void();
int m= (a + b) / 2, ac= tol[id[i] + c] - tol[id[i]], bc= c - ac, ad= tol[id[i] + d] - tol[id[i]], bd= d - ad;
dfs(dfs, i * 2, a, m, ac, ad), dfs(dfs, i * 2 + 1, m, b, bc, bd);
};
return dfs(dfs, 1, 0, sz, y2i(u), y2i(d)), ret;
}
void set(pos_t x, pos_t y, T v) { set_<1>(x, y, v); }
void mul(pos_t x, pos_t y, T v) { set_<0>(x, y, v); }
T get(pos_t x, pos_t y) const { return val[xy2i(x, y) + id[2]]; }
};
template <class T> struct ListRange {
using Iterator= typename std::vector<T>::const_iterator;
Iterator bg, ed;
Iterator begin() const { return bg; }
Iterator end() const { return ed; }
size_t size() const { return std::distance(bg, ed); }
const T &operator[](int i) const { return bg[i]; }
};
template <class T> class CsrArray {
std::vector<T> csr;
std::vector<int> pos;
public:
CsrArray()= default;
CsrArray(const std::vector<T> &c, const std::vector<int> &p): csr(c), pos(p) {}
size_t size() const { return pos.size() - 1; }
const ListRange<T> operator[](int i) const { return {csr.cbegin() + pos[i], csr.cbegin() + pos[i + 1]}; }
};
template <class Cost= void, bool weight= false> class Tree {
template <class D, class T> struct Edge_B {
int to;
T cost;
operator int() const { return to; }
};
template <class D> struct Edge_B<D, void> {
int to;
operator int() const { return to; }
};
using Edge= Edge_B<void, Cost>;
using C= std::conditional_t<std::is_void_v<Cost>, std::nullptr_t, Cost>;
std::vector<std::conditional_t<std::is_void_v<Cost>, std::pair<int, int>, std::tuple<int, int, Cost>>> es;
std::vector<Edge> g;
std::vector<int> P, PP, D, I, L, R, pos;
std::vector<C> DW, W;
public:
Tree(int n): P(n, -2) {}
template <class T= Cost> std::enable_if_t<std::is_void_v<T>, void> add_edge(int u, int v) { es.emplace_back(u, v), es.emplace_back(v, u); }
template <class T> std::enable_if_t<std::is_convertible_v<T, Cost>, void> add_edge(int u, int v, T c) { es.emplace_back(u, v, c), es.emplace_back(v, u, c); }
template <class T, class U, std::enable_if_t<std::conjunction_v<std::is_convertible<T, Cost>, std::is_convertible<U, Cost>>, std::nullptr_t> = nullptr> void add_edge(int u, int v, T c, U d) /* c:u->v, d:v->u */ { es.emplace_back(u, v, c), es.emplace_back(v, u, d); }
void build(int root= 0) {
size_t n= P.size();
I.resize(n), PP.resize(n), std::iota(PP.begin(), PP.end(), 0), D.assign(n, 0), L.assign(n, 0), R.assign(n, 0), pos.resize(n + 1), g.resize(es.size());
for (const auto &e: es) ++pos[std::get<0>(e)];
std::partial_sum(pos.begin(), pos.end(), pos.begin());
if constexpr (std::is_void_v<Cost>)
for (const auto &[f, t]: es) g[--pos[f]]= {t};
else
for (const auto &[f, t, c]: es) g[--pos[f]]= {t, c};
auto f= [&, i= 0, v= 0, t= 0](int r) mutable {
for (P[r]= -1, I[t++]= r; i < t; ++i)
for (int u: operator[](v= I[i]))
if (P[v] != u) P[I[t++]= u]= v;
};
f(root);
for (size_t r= 0; r < n; ++r)
if (P[r] == -2) f(r);
std::vector<int> Z(n, 1), nx(n, -1);
for (int i= n, v; i--;) {
if (P[v= I[i]] == -1) continue;
if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v;
if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v;
}
for (int v: I)
if (nx[v] != -1) PP[nx[v]]= v;
for (int v: I)
if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1;
for (int i= n; i--;) L[I[i]]= i;
for (int v: I) {
int ir= R[v]= L[v] + Z[v];
for (int u: operator[](v))
if (u != P[v] && u != nx[v]) L[u]= ir-= Z[u];
if (nx[v] != -1) L[nx[v]]= L[v] + 1;
}
if constexpr (weight) {
DW.resize(n), W.resize(n);
for (int v: I)
for (auto &[u, c]: operator[](v)) {
if (u != P[v]) DW[u]= DW[v] + c;
else W[v]= c;
}
}
for (int i= n; i--;) I[L[i]]= i;
}
size_t size() const { return P.size(); }
const ListRange<Edge> operator[](int v) const { return {g.cbegin() + pos[v], g.cbegin() + pos[v + 1]}; }
int depth(int v) const { return D[v]; }
C depth_w(int v) const {
static_assert(weight, "\'depth_w\' is not available");
return DW[v];
}
int to_seq(int v) const { return L[v]; }
int to_node(int i) const { return I[i]; }
int parent(int v) const { return P[v]; }
int root(int v) const {
for (v= PP[v];; v= PP[P[v]])
if (P[v] == -1) return v;
}
bool connected(int u, int v) const { return root(u) == root(v); }
int lca(int u, int v) const {
for (;; v= P[PP[v]]) {
if (L[u] > L[v]) std::swap(u, v);
if (PP[u] == PP[v]) return u;
}
}
int la(int v, int k) const {
assert(k <= D[v]);
for (int u;; k-= L[v] - L[u] + 1, v= P[u])
if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k];
}
int la_w(int v, Cost w) const {
static_assert(weight, "\'la_w\' is not available");
for (Cost c;; w-= c) {
int u= PP[v];
c= DW[v] - DW[u] + W[u];
if (w < c) {
int ok= L[v], ng= L[u] - 1;
while (ok - ng > 1) {
if (int m= (ok + ng) / 2; DW[v] - DW[I[m]] <= w) ok= m;
else ng= m;
}
return I[ok];
}
if (v= P[u]; v == -1) return u;
}
}
int jump(int u, int v, int k) const {
if (!k) return u;
if (u == v) return -1;
if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u];
int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w];
return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k);
}
int jump_w(int u, int v, Cost w) const {
static_assert(weight, "\'jump_w\' is not available");
if (u == v) return u;
int z= lca(u, v);
Cost d_uz= DW[u] - DW[z], d_vz= DW[v] - DW[z];
return w >= d_uz + d_vz ? v : w <= d_uz ? la_w(u, w) : la_w(v, d_uz + d_vz - w);
}
int dist(int u, int v) const { return D[u] + D[v] - D[lca(u, v)] * 2; }
C dist_w(int u, int v) const {
static_assert(weight, "\'dist_w\' is not available");
return DW[u] + DW[v] - DW[lca(u, v)] * 2;
}
// u is in v
bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; }
int subtree_size(int v) const { return R[v] - L[v]; }
// half-open interval
std::array<int, 2> subtree(int v) const { return std::array{L[v], R[v]}; }
// sequence of closed intervals
template <bool edge= 0> std::vector<std::array<int, 2>> path(int u, int v) const {
std::vector<std::array<int, 2>> up, down;
while (PP[u] != PP[v]) {
if (L[u] < L[v]) down.emplace_back(std::array{L[PP[v]], L[v]}), v= P[PP[v]];
else up.emplace_back(std::array{L[u], L[PP[u]]}), u= P[PP[u]];
}
if (L[u] < L[v]) down.emplace_back(std::array{L[u] + edge, L[v]});
else if (L[v] + edge <= L[u]) up.emplace_back(std::array{L[u], L[v] + edge});
return up.insert(up.end(), down.rbegin(), down.rend()), up;
}
};
using namespace std;
struct RSQ {
using T= int;
static T ti() { return 0; }
static T op(T l, T r) { return l + r; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
debug(N, Q);
Tree<long long, true> tree(N);
for (int i= 1; i < N; ++i) {
int A, B, C;
cin >> A >> B >> C;
tree.add_edge(--A, --B, C);
}
tree.build(0);
set<array<int, 2>> st;
vector<tuple<int, int, int, long long>> query;
for (int i= 0; i < Q; ++i) {
int tp, v, t, l;
cin >> tp >> v >> t >> l, --v;
if (tp == 0) {
int x= tree.to_seq(v), y= t + tree.depth_w(v);
query.emplace_back(1, 0, x, y);
st.insert({x, y});
// debug(v, l, tree.la_w(v, l));
if (int u= tree.parent(tree.la_w(v, l)); u != -1) {
debug(v, u);
x= tree.to_seq(u);
query.emplace_back(-1, 0, x, y);
st.insert({x, y});
}
} else {
auto [l, r]= tree.subtree(v);
query.emplace_back(0, l, r, t + tree.depth_w(v));
}
}
SegmentTree_2D<int, RSQ> seg(st);
for (auto [t, a, b, y]: query) {
if (t == 0) cout << seg.fold(a, b, 0, y + 1) << '\n';
else seg.mul(b, y, t);
}
return 0;
}
hashiryo