結果
| 問題 |
No.1600 Many Shortest Path Problems
|
| コンテスト | |
| ユーザー |
hashiryo
|
| 提出日時 | 2023-11-05 12:36:54 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 21,993 bytes |
| コンパイル時間 | 3,463 ms |
| コンパイル使用メモリ | 237,136 KB |
| 最終ジャッジ日時 | 2025-02-17 19:22:12 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 19 WA * 32 |
ソースコード
// #define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
// clang-format off
std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
std::ostream&operator<<(std::ostream&os,const __uint128_t &v){if(!v)os<<"0";__uint128_t tmp=v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
#define checkpoint() (void(0))
#define debug(...) (void(0))
#define debugArray(x,n) (void(0))
#define debugMatrix(x,h,w) (void(0))
// clang-format on
#include <type_traits>
template <class Int> constexpr inline Int mod_inv(Int a, Int mod) {
static_assert(std::is_signed_v<Int>);
Int x= 1, y= 0, b= mod;
for (Int q= 0, z= 0; b;) z= x, x= y, y= z - y * (q= a / b), z= a, a= b, b= z - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
#define CE constexpr
#define IL inline
#define NORM \
if (n >= mod) n-= mod; \
return n
#define PLUS(U, M) \
CE IL U plus(U l, U r) const { \
if (l+= r; l >= M) l-= M; \
return l; \
}
#define DIFF(U, C, M) \
CE IL U diff(U l, U r) const { \
if (l-= r; l >> C) l+= M; \
return l; \
}
#define SGN(U) \
static CE IL U set(U n) { return n; } \
static CE IL U get(U n) { return n; } \
static CE IL U norm(U n) { return n; }
template <class u_t, class du_t, u8 B, u8 A> struct MP_Mo {
u_t mod;
CE MP_Mo(): mod(0), iv(0), r2(0) {}
CE MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
CE IL u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
PLUS(u_t, mod << 1)
DIFF(u_t, A, mod << 1)
CE IL u_t set(u_t n) const { return mul(n, r2); }
CE IL u_t get(u_t n) const {
n= reduce(n);
NORM;
}
CE IL u_t norm(u_t n) const { NORM; }
private:
u_t iv, r2;
static CE u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
CE IL u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
struct MP_Na {
u32 mod;
CE MP_Na(): mod(0){};
CE MP_Na(u32 m): mod(m) {}
CE IL u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32)
};
struct MP_Br { // mod < 2^31
u32 mod;
CE MP_Br(): mod(0), s(0), x(0) {}
CE MP_Br(u32 m): mod(m), s(95 - __builtin_clz(m - 1)), x(((u128(1) << s) + m - 1) / m) {}
CE IL u32 mul(u32 l, u32 r) const { return rem(u64(l) * r); }
PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) private: u8 s;
u64 x;
CE IL u64 quo(u64 n) const { return (u128(x) * n) >> s; }
CE IL u32 rem(u64 n) const { return n - quo(n) * mod; }
};
struct MP_Br2 { // 2^20 < mod <= 2^41
u64 mod;
CE MP_Br2(): mod(0), x(0) {}
CE MP_Br2(u64 m): mod(m), x((u128(1) << 84) / m) {}
CE IL u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
PLUS(u64, mod << 1)
DIFF(u64, 63, mod << 1)
static CE IL u64 set(u64 n) { return n; }
CE IL u64 get(u64 n) const { NORM; }
CE IL u64 norm(u64 n) const { NORM; }
private:
u64 x;
CE IL u128 quo(const u128 &n) const { return (n * x) >> 84; }
CE IL u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
struct MP_D2B1 {
u8 s;
u64 mod, d, v;
CE MP_D2B1(): s(0), mod(0), d(0), v(0) {}
CE MP_D2B1(u64 m): s(__builtin_clzll(m)), mod(m), d(m << s), v(u128(-1) / d) {}
CE IL u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
PLUS(u64, mod) DIFF(u64, 63, mod) SGN(u64) private: CE IL u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
template <class u_t, class MP> CE u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
#undef NORM
#undef PLUS
#undef DIFF
#undef SGN
#undef CE
}
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
namespace math_internal {
#define CE constexpr
template <class MP, u64 MOD> struct SB: s_b {
protected:
static CE MP md= MP(MOD);
};
template <class Int, class U, class B> struct MInt: public B {
using Uint= U;
static CE inline auto mod() { return B::md.mod; }
CE MInt(): x(0) {}
template <class T, enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>, nullptr_t> = nullptr> CE MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
CE MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
CE MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
CE MInt name const { \
MInt ret; \
ret.x= op; \
return ret; \
}
FUNC(operator+(const MInt& r), B::md.plus(x, r.x))
FUNC(operator-(const MInt& r), B::md.diff(x, r.x))
FUNC(operator*(const MInt& r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
CE MInt operator/(const MInt& r) const { return *this * r.inv(); }
CE MInt& operator+=(const MInt& r) { return *this= *this + r; }
CE MInt& operator-=(const MInt& r) { return *this= *this - r; }
CE MInt& operator*=(const MInt& r) { return *this= *this * r; }
CE MInt& operator/=(const MInt& r) { return *this= *this / r; }
CE bool operator==(const MInt& r) const { return B::md.norm(x) == B::md.norm(r.x); }
CE bool operator!=(const MInt& r) const { return !(*this == r); }
CE bool operator<(const MInt& r) const { return B::md.norm(x) < B::md.norm(r.x); }
CE inline MInt inv() const { return mod_inv<Int>(val(), B::md.mod); }
CE inline Uint val() const { return B::md.get(x); }
friend ostream& operator<<(ostream& os, const MInt& r) { return os << r.val(); }
friend istream& operator>>(istream& is, MInt& r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using ModInt= conditional_t < (MOD < (1 << 30)) & MOD, MInt<int, u32, SB<MP_Mo<u32, u64, 32, 31>, MOD>>, conditional_t < (MOD < (1ull << 62)) & MOD, MInt<i64, u64, SB<MP_Mo<u64, u128, 64, 63>, MOD>>, conditional_t<MOD<(1u << 31), MInt<int, u32, SB<MP_Na, MOD>>, conditional_t<MOD<(1ull << 32), MInt<i64, u32, SB<MP_Na, MOD>>, conditional_t<MOD <= (1ull << 41), MInt<i64, u64, SB<MP_Br2, MOD>>, MInt<i64, u64, SB<MP_D2B1, MOD>>>>>>>;
#undef CE
}
using math_internal::ModInt;
template <class mod_t, size_t LM> mod_t get_inv(int n) {
static_assert(is_modint_v<mod_t>);
static const auto m= mod_t::mod();
static mod_t dat[LM];
static int l= 1;
if (l == 1) dat[l++]= 1;
while (l <= n) dat[l++]= dat[m % l] * (m - m / l);
return dat[n];
}
class UnionFind {
std::vector<int> par;
public:
UnionFind(int n): par(n, -1) {}
bool unite(int u, int v) {
if ((u= root(u)) == (v= root(v))) return false;
if (par[u] > par[v]) std::swap(u, v);
return par[u]+= par[v], par[v]= u, true;
}
bool same(int u, int v) { return root(u) == root(v); }
int root(int u) { return par[u] < 0 ? u : par[u]= root(par[u]); }
int size(int u) { return -par[root(u)]; }
};
template <class T> struct ListRange {
using Iterator= typename std::vector<T>::const_iterator;
Iterator bg, ed;
Iterator begin() const { return bg; }
Iterator end() const { return ed; }
size_t size() const { return std::distance(bg, ed); }
const T &operator[](int i) const { return bg[i]; }
};
template <class T> class CsrArray {
std::vector<T> csr;
std::vector<int> pos;
public:
CsrArray()= default;
CsrArray(const std::vector<T> &c, const std::vector<int> &p): csr(c), pos(p) {}
size_t size() const { return pos.size() - 1; }
const ListRange<T> operator[](int i) const { return {csr.cbegin() + pos[i], csr.cbegin() + pos[i + 1]}; }
};
template <class Cost= void, bool weight= false> class Tree {
template <class D, class T> struct Edge_B {
int to;
T cost;
operator int() const { return to; }
};
template <class D> struct Edge_B<D, void> {
int to;
operator int() const { return to; }
};
using Edge= Edge_B<void, Cost>;
using C= std::conditional_t<std::is_void_v<Cost>, std::nullptr_t, Cost>;
std::vector<std::conditional_t<std::is_void_v<Cost>, std::pair<int, int>, std::tuple<int, int, Cost>>> es;
std::vector<Edge> g;
std::vector<int> P, PP, D, I, L, R, pos;
std::vector<C> DW, W;
public:
Tree(int n): P(n, -2) {}
template <class T= Cost> std::enable_if_t<std::is_void_v<T>, void> add_edge(int u, int v) { es.emplace_back(u, v), es.emplace_back(v, u); }
template <class T> std::enable_if_t<std::is_convertible_v<T, Cost>, void> add_edge(int u, int v, T c) { es.emplace_back(u, v, c), es.emplace_back(v, u, c); }
template <class T, class U, std::enable_if_t<std::conjunction_v<std::is_convertible<T, Cost>, std::is_convertible<U, Cost>>, std::nullptr_t> = nullptr> void add_edge(int u, int v, T c, U d) /* c:u->v, d:v->u */ { es.emplace_back(u, v, c), es.emplace_back(v, u, d); }
void build(int root= 0) {
size_t n= P.size();
I.resize(n), PP.resize(n), std::iota(PP.begin(), PP.end(), 0), D.assign(n, 0), L.assign(n, 0), R.assign(n, 0), pos.resize(n + 1), g.resize(es.size());
for (const auto &e: es) ++pos[std::get<0>(e)];
std::partial_sum(pos.begin(), pos.end(), pos.begin());
if constexpr (std::is_void_v<Cost>)
for (const auto &[f, t]: es) g[--pos[f]]= {t};
else
for (const auto &[f, t, c]: es) g[--pos[f]]= {t, c};
auto f= [&, i= 0, v= 0, t= 0](int r) mutable {
for (P[r]= -1, I[t++]= r; i < t; ++i)
for (int u: operator[](v= I[i]))
if (P[v] != u) P[I[t++]= u]= v;
};
f(root);
for (size_t r= 0; r < n; ++r)
if (P[r] == -2) f(r);
std::vector<int> Z(n, 1), nx(n, -1);
for (int i= n, v; i--;) {
if (P[v= I[i]] == -1) continue;
if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v;
if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v;
}
for (int v: I)
if (nx[v] != -1) PP[nx[v]]= v;
for (int v: I)
if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1;
for (int i= n; i--;) L[I[i]]= i;
for (int v: I) {
int ir= R[v]= L[v] + Z[v];
for (int u: operator[](v))
if (u != P[v] && u != nx[v]) L[u]= ir-= Z[u];
if (nx[v] != -1) L[nx[v]]= L[v] + 1;
}
if constexpr (weight) {
DW.resize(n), W.resize(n);
for (int v: I)
for (auto &[u, c]: operator[](v)) {
if (u != P[v]) DW[u]= DW[v] + c;
else W[v]= c;
}
}
for (int i= n; i--;) I[L[i]]= i;
}
size_t size() const { return P.size(); }
const ListRange<Edge> operator[](int v) const { return {g.cbegin() + pos[v], g.cbegin() + pos[v + 1]}; }
int depth(int v) const { return D[v]; }
C depth_w(int v) const {
static_assert(weight, "\'depth_w\' is not available");
return DW[v];
}
int to_seq(int v) const { return L[v]; }
int to_node(int i) const { return I[i]; }
int parent(int v) const { return P[v]; }
int root(int v) const {
for (v= PP[v];; v= PP[P[v]])
if (P[v] == -1) return v;
}
bool connected(int u, int v) const { return root(u) == root(v); }
int lca(int u, int v) const {
for (;; v= P[PP[v]]) {
if (L[u] > L[v]) std::swap(u, v);
if (PP[u] == PP[v]) return u;
}
}
int la(int v, int k) const {
assert(k <= D[v]);
for (int u;; k-= L[v] - L[u] + 1, v= P[u])
if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k];
}
int la_w(int v, C w) const {
static_assert(weight, "\'la_w\' is not available");
for (C c;; w-= c) {
int u= PP[v];
c= DW[v] - DW[u] + W[u];
if (w < c) {
int ok= L[v], ng= L[u] - 1;
while (ok - ng > 1) {
if (int m= (ok + ng) / 2; DW[v] - DW[I[m]] <= w) ok= m;
else ng= m;
}
return I[ok];
}
if (v= P[u]; v == -1) return u;
}
}
int jump(int u, int v, int k) const {
if (!k) return u;
if (u == v) return -1;
if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u];
int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w];
return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k);
}
int jump_w(int u, int v, C w) const {
static_assert(weight, "\'jump_w\' is not available");
if (u == v) return u;
int z= lca(u, v);
C d_uz= DW[u] - DW[z], d_vz= DW[v] - DW[z];
return w >= d_uz + d_vz ? v : w <= d_uz ? la_w(u, w) : la_w(v, d_uz + d_vz - w);
}
int dist(int u, int v) const { return D[u] + D[v] - D[lca(u, v)] * 2; }
C dist_w(int u, int v) const {
static_assert(weight, "\'dist_w\' is not available");
return DW[u] + DW[v] - DW[lca(u, v)] * 2;
}
// u is in v
bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; }
int subtree_size(int v) const { return R[v] - L[v]; }
// half-open interval
std::array<int, 2> subtree(int v) const { return std::array{L[v], R[v]}; }
// sequence of closed intervals
template <bool edge= 0> std::vector<std::array<int, 2>> path(int u, int v) const {
std::vector<std::array<int, 2>> up, down;
while (PP[u] != PP[v]) {
if (L[u] < L[v]) down.emplace_back(std::array{L[PP[v]], L[v]}), v= P[PP[v]];
else up.emplace_back(std::array{L[u], L[PP[u]]}), u= P[PP[u]];
}
if (L[u] < L[v]) down.emplace_back(std::array{L[u] + edge, L[v]});
else if (L[v] + edge <= L[u]) up.emplace_back(std::array{L[u], L[v] + edge});
return up.insert(up.end(), down.rbegin(), down.rend()), up;
}
};
template <class T> static constexpr bool tuple_like_v= false;
template <class... Args> static constexpr bool tuple_like_v<std::tuple<Args...>> = true;
template <class T, class U> static constexpr bool tuple_like_v<std::pair<T, U>> = true;
template <class T, size_t K> static constexpr bool tuple_like_v<std::array<T, K>> = true;
template <class T> auto to_tuple(const T &t) {
if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t);
}
template <class T> auto forward_tuple(const T &t) {
if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t);
}
template <class T> static constexpr bool array_like_v= false;
template <class T, size_t K> static constexpr bool array_like_v<std::array<T, K>> = true;
template <class T, class U> static constexpr bool array_like_v<std::pair<T, U>> = std::is_convertible_v<T, U>;
template <class T> static constexpr bool array_like_v<std::tuple<T>> = true;
template <class T, class U, class... Args> static constexpr bool array_like_v<std::tuple<T, U, Args...>> = array_like_v<std::tuple<T, Args...>> && std::is_convertible_v<U, T>;
template <class T> auto to_array(const T &t) {
if constexpr (array_like_v<T>) return std::apply([](auto &&...x) { return std::array{x...}; }, t);
}
template <class T> using to_tuple_t= decltype(to_tuple(T()));
template <class T> using to_array_t= decltype(to_array(T()));
template <class pos_t, class M> class SegmentTree_2D {
public:
using T= typename M::T;
using Pos= std::array<pos_t, 2>;
std::vector<pos_t> xs;
std::vector<Pos> yxs;
std::vector<int> id, tol;
std::vector<T> val;
template <class P> using canbe_Pos= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t>>;
template <class P> using canbe_PosV= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t, T>>;
template <class P, class U> static constexpr bool canbe_Pos_and_T_v= std::conjunction_v<canbe_Pos<P>, std::is_convertible<U, T>>;
int sz;
inline int x2i(pos_t x) const { return std::lower_bound(xs.begin(), xs.end(), x) - xs.begin(); }
inline int y2i(pos_t y) const {
return std::lower_bound(yxs.begin(), yxs.end(), Pos{y, 0}, [](const Pos &a, const Pos &b) { return a[0] < b[0]; }) - yxs.begin();
}
inline int xy2i(pos_t x, pos_t y) const {
Pos p{y, x};
auto it= std::lower_bound(yxs.begin(), yxs.end(), p);
return assert(p == *it), it - yxs.begin();
}
template <bool z, size_t k, class P> inline auto get_(const P &p) {
if constexpr (z) return std::get<k>(p);
else return std::get<k>(p.first);
}
template <bool z, class XYW> inline void build(const XYW *xyw, int n, const T &v= M::ti()) {
xs.resize(n), yxs.resize(n);
for (int i= n; i--;) xs[i]= get_<z, 0>(xyw[i]);
std::sort(xs.begin(), xs.end()), xs.erase(std::unique(xs.begin(), xs.end()), xs.end()), id.resize((sz= 1 << (32 - __builtin_clz(xs.size()))) * 2 + 1);
std::vector<int> ix(n), ord(n);
for (int i= n; i--;) ix[i]= x2i(get_<z, 0>(xyw[i]));
for (int i: ix)
for (i+= sz; i; i>>= 1) ++id[i + 1];
for (int i= 1, e= sz * 2; i < e; ++i) id[i + 1]+= id[i];
val.assign(id.back() * 2, M::ti()), tol.resize(id[sz] + 1), std::iota(ord.begin(), ord.end(), 0), std::sort(ord.begin(), ord.end(), [&](int i, int j) { return get_<z, 1>(xyw[i]) == get_<z, 1>(xyw[j]) ? get_<z, 0>(xyw[i]) < get_<z, 0>(xyw[j]) : get_<z, 1>(xyw[i]) < get_<z, 1>(xyw[j]); });
for (int i= n; i--;) yxs[i]= {get_<z, 1>(xyw[ord[i]]), get_<z, 0>(xyw[ord[i]])};
std::vector<int> ptr= id;
for (int r: ord)
for (int i= ix[r] + sz, j= -1; i; j= i, i>>= 1) {
int p= ptr[i]++;
if constexpr (z) {
if constexpr (std::tuple_size_v<XYW> == 3) val[id[i + 1] + p]= std::get<2>(xyw[r]);
else val[id[i + 1] + p]= v;
} else val[id[i + 1] + p]= xyw[r].second;
if (j != -1) tol[p + 1]= !(j & 1);
}
for (int i= 1, e= id[sz]; i < e; ++i) tol[i + 1]+= tol[i];
for (int i= 0, e= sz * 2; i < e; ++i) {
auto dat= val.begin() + id[i] * 2;
for (int j= id[i + 1] - id[i]; --j > 0;) dat[j]= M::op(dat[j * 2], dat[j * 2 + 1]);
}
}
inline T fold(int i, int a, int b) const {
int n= id[i + 1] - id[i];
T ret= M::ti();
auto dat= val.begin() + id[i] * 2;
for (a+= n, b+= n; a < b; a>>= 1, b>>= 1) {
if (a & 1) ret= M::op(ret, dat[a++]);
if (b & 1) ret= M::op(dat[--b], ret);
}
return ret;
}
template <bool z> inline void seti(int i, int j, T v) {
auto dat= val.begin() + id[i] * 2;
j+= id[i + 1] - id[i];
if constexpr (z) dat[j]= v;
else dat[j]= M::op(dat[j], v);
for (; j;) j>>= 1, dat[j]= M::op(dat[2 * j], dat[2 * j + 1]);
}
template <bool z> inline void set_(pos_t x, pos_t y, T v) {
for (int i= 1, p= xy2i(x, y);;) {
if (seti<z>(i, p - id[i], v); i >= sz) break;
if (int lc= tol[p] - tol[id[i]], rc= (p - id[i]) - lc; tol[p + 1] - tol[p]) p= id[2 * i] + lc, i= 2 * i;
else p= id[2 * i + 1] + rc, i= 2 * i + 1;
}
}
public:
template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const P *p, size_t n) { build<1>(p, n); }
template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const std::vector<P> &p): SegmentTree_2D(p.data(), p.size()) {}
template <class P, typename= std::enable_if_t<canbe_Pos<P>::value>> SegmentTree_2D(const std::set<P> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const P *p, size_t n, const U &v) { build<1>(p, n, v); }
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<P> &p, const U &v): SegmentTree_2D(p.data(), p.size(), v) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::set<P> &p, const U &v): SegmentTree_2D(std::vector(p.begin(), p.end()), v) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::pair<P, U> *p, size_t n) { build<0>(p, n); }
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<std::pair<P, U>> &p): SegmentTree_2D(p.data(), p.size()) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::map<P, U> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
// [l,r) x [u,d)
T fold(pos_t l, pos_t r, pos_t u, pos_t d) const {
T ret= M::ti();
int L= x2i(l), R= x2i(r);
auto dfs= [&](auto &dfs, int i, int a, int b, int c, int d) -> void {
if (c == d || R <= a || b <= L) return;
if (L <= a && b <= R) return ret= M::op(ret, fold(i, c, d)), void();
int m= (a + b) / 2, ac= tol[id[i] + c] - tol[id[i]], bc= c - ac, ad= tol[id[i] + d] - tol[id[i]], bd= d - ad;
dfs(dfs, i * 2, a, m, ac, ad), dfs(dfs, i * 2 + 1, m, b, bc, bd);
};
return dfs(dfs, 1, 0, sz, y2i(u), y2i(d)), ret;
}
void set(pos_t x, pos_t y, T v) { set_<1>(x, y, v); }
void mul(pos_t x, pos_t y, T v) { set_<0>(x, y, v); }
T get(pos_t x, pos_t y) const { return val[xy2i(x, y) + id[2]]; }
};
using namespace std;
struct RMQ {
using T= int;
static T ti() { return 0x7fffffff; }
static T op(T a, T b) { return min(a, b); }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using Mint= ModInt<1000000007>;
int N, M;
cin >> N >> M;
vector<pair<int, int>> es;
vector<char> used(M);
UnionFind uf(N);
Mint w= 1;
Tree<Mint, true> tree(N);
for (int i= 0; i < M; ++i) {
int A, B;
cin >> A >> B, --A, --B;
es.emplace_back(A, B);
w+= w;
if (uf.unite(A, B)) {
used[i]= true;
tree.add_edge(A, B, w);
}
}
tree.build();
vector<array<int, 3>> xyw;
for (int i= 0; i < M; ++i) {
if (used[i]) continue;
auto [A, B]= es[i];
int a= tree.to_seq(A), b= tree.to_seq(B);
if (a > b) swap(a, b);
xyw.push_back({a, b, i});
}
SegmentTree_2D<int, RMQ> seg(xyw);
int Q;
cin >> Q;
while (Q--) {
int u, v, e;
cin >> u >> v >> e, --u, --v, --e;
auto [x, y]= es[e];
if (tree.parent(y) == x) swap(x, y);
bool u_in= tree.in_subtree(u, x);
if (u_in) swap(u, v);
if (!used[e] || u_in == tree.in_subtree(v, x)) {
cout << tree.dist_w(u, v) << '\n';
continue;
}
auto [l, r]= tree.subtree(x);
int i= min(seg.fold(0, l, l, r), seg.fold(l, r, r, N));
if (i > M) {
cout << -1 << '\n';
continue;
}
auto [p, q]= es[i];
if (tree.in_subtree(p, x)) swap(p, q);
cout << tree.dist_w(u, p) + tree.dist_w(v, q) + Mint(2).pow(i + 1) << '\n';
}
return 0;
}
hashiryo