結果
問題 | No.2065 Sum of Min |
ユーザー | hashiryo |
提出日時 | 2023-11-05 21:44:47 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 17,481 bytes |
コンパイル時間 | 3,279 ms |
コンパイル使用メモリ | 244,256 KB |
実行使用メモリ | 33,596 KB |
最終ジャッジ日時 | 2024-09-25 22:45:06 |
合計ジャッジ時間 | 18,117 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,888 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 1,238 ms
26,672 KB |
testcase_05 | AC | 978 ms
26,688 KB |
testcase_06 | AC | 1,233 ms
26,724 KB |
testcase_07 | AC | 150 ms
26,500 KB |
testcase_08 | AC | 658 ms
26,672 KB |
testcase_09 | AC | 1,686 ms
26,632 KB |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
ソースコード
// #define _GLIBCXX_DEBUG #include <bits/stdc++.h> // clang-format off std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;} std::ostream&operator<<(std::ostream&os,const __uint128_t &v){if(!v)os<<"0";__uint128_t tmp=v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;} #define checkpoint() (void(0)) #define debug(...) (void(0)) #define debugArray(x,n) (void(0)) #define debugMatrix(x,h,w) (void(0)) // clang-format on #include <type_traits> #define MEMBER_MACRO(member, Dummy, name, type1, type2, last) \ template <class tClass> struct name##member { \ template <class U, Dummy> static type1 check(U *); \ static type2 check(...); \ static tClass *mClass; \ last; \ } #define HAS_CHECK(member, Dummy) MEMBER_MACRO(member, Dummy, has_, std::true_type, std::false_type, static const bool value= decltype(check(mClass))::value) #define HAS_MEMBER(member) HAS_CHECK(member, int dummy= (&U::member, 0)) #define HAS_TYPE(member) HAS_CHECK(member, class dummy= typename U::member) #define HOGE_OR(member, name, type2) \ MEMBER_MACRO(member, class dummy= typename U::member, name, typename U::member, type2, using type= decltype(check(mClass))); \ template <class tClass> using name##member##_t= typename name##member<tClass>::type #define NULLPTR_OR(member) HOGE_OR(member, nullptr_or_, std::nullptr_t) #define MYSELF_OR(member) HOGE_OR(member, myself_or_, tClass) template <class T> static constexpr bool tuple_like_v= false; template <class... Args> static constexpr bool tuple_like_v<std::tuple<Args...>> = true; template <class T, class U> static constexpr bool tuple_like_v<std::pair<T, U>> = true; template <class T, size_t K> static constexpr bool tuple_like_v<std::array<T, K>> = true; template <class T> auto to_tuple(const T &t) { if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t); } template <class T> auto forward_tuple(const T &t) { if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t); } template <class T> static constexpr bool array_like_v= false; template <class T, size_t K> static constexpr bool array_like_v<std::array<T, K>> = true; template <class T, class U> static constexpr bool array_like_v<std::pair<T, U>> = std::is_convertible_v<T, U>; template <class T> static constexpr bool array_like_v<std::tuple<T>> = true; template <class T, class U, class... Args> static constexpr bool array_like_v<std::tuple<T, U, Args...>> = array_like_v<std::tuple<T, Args...>> && std::is_convertible_v<U, T>; template <class T> auto to_array(const T &t) { if constexpr (array_like_v<T>) return std::apply([](auto &&...x) { return std::array{x...}; }, t); } template <class T> using to_tuple_t= decltype(to_tuple(T())); template <class T> using to_array_t= decltype(to_array(T())); // clang-format off template<class T>struct make_long{using type= T;}; template<>struct make_long<int8_t>{using type= int16_t;}; template<>struct make_long<uint8_t>{using type= uint16_t;}; template<>struct make_long<int16_t>{using type= int32_t;}; template<>struct make_long<uint16_t>{using type= uint32_t;}; template<>struct make_long<int32_t>{using type= int64_t;}; template<>struct make_long<uint32_t>{using type= uint64_t;}; template<>struct make_long<int64_t>{using type= __int128_t;}; template<>struct make_long<uint64_t>{using type= __uint128_t;}; template<>struct make_long<float>{using type= double;}; template<>struct make_long<double>{using type= long double;}; template<class T> using make_long_t= typename make_long<T>::type; // clang-format on namespace kdtree_internal { template <class pos_t, size_t K, class M, class A, class B> class KDTreeImpl {}; template <class pos_t, size_t K, class M, class... PK, class... PK2> class KDTreeImpl<pos_t, K, M, std::tuple<PK...>, std::tuple<PK2...>> { HAS_MEMBER(op); HAS_MEMBER(ti); HAS_MEMBER(mp); HAS_MEMBER(cp); HAS_TYPE(T); HAS_TYPE(E); MYSELF_OR(T); NULLPTR_OR(E); using Sec= std::array<pos_t, 2>; using Pos= std::array<pos_t, K>; using Range= std::array<Sec, K>; using long_pos_t= make_long_t<pos_t>; template <class L> static constexpr bool monoid_v= std::conjunction_v<has_T<L>, has_op<L>, has_ti<L>>; template <class L> static constexpr bool dual_v= std::conjunction_v<has_T<L>, has_E<L>, has_mp<L>, has_cp<L>>; struct Node_BB { int ch[2]= {-1, -1}; Pos pos; pos_t range[K][2]; }; template <class U> struct Node_B: Node_BB { U val; }; template <class D, bool sg, bool du> struct Node_D: Node_B<M> {}; template <bool sg, bool du> struct Node_D<void, sg, du>: Node_BB {}; template <class D> struct Node_D<D, 1, 0>: Node_B<typename M::T> { typename M::T sum; }; template <class D> struct Node_D<D, 0, 1>: Node_B<typename M::T> { typename M::E laz; bool laz_flg= false; }; template <class D> struct Node_D<D, 1, 1>: Node_B<typename M::T> { typename M::T sum; typename M::E laz; bool laz_flg= false; }; using Node= Node_D<M, monoid_v<M>, dual_v<M>>; using Iter= typename std::vector<int>::iterator; using T= std::conditional_t<std::is_void_v<M>, std::nullptr_t, myself_or_T_t<M>>; using E= nullptr_or_E_t<M>; template <class P> using canbe_Pos= std::is_convertible<to_tuple_t<P>, std::tuple<PK...>>; template <class P> using canbe_PosV= std::is_convertible<to_tuple_t<P>, std::tuple<PK..., T>>; template <class P, class U> static constexpr bool canbe_Pos_and_T_v= std::conjunction_v<canbe_Pos<P>, std::is_convertible<U, T>>; std::vector<Node> ns; static inline T def_val() { if constexpr (monoid_v<M>) return M::ti(); else return T(); } template <bool z, size_t k, class P> static inline auto get_(const P &p) { if constexpr (z) return std::get<k>(p); else return std::get<k>(p.first); } template <class P, size_t... I> Range to_range(const P &p, std::index_sequence<I...>) { return {(assert(std::get<I + I>(p) <= std::get<I + I + 1>(p)), Sec{std::get<I + I>(p), std::get<I + I + 1>(p)})...}; } inline void update(int t) { ns[t].sum= ns[t].val; if (ns[t].ch[0] != -1) ns[t].sum= M::op(ns[t].sum, ns[ns[t].ch[0]].sum); if (ns[t].ch[1] != -1) ns[t].sum= M::op(ns[t].sum, ns[ns[t].ch[1]].sum); } inline void propagate(int t, const E &x) { if (t == -1) return; if (ns[t].laz_flg) M::cp(ns[t].laz, x); else ns[t].laz= x, ns[t].laz_flg= true; M::mp(ns[t].val, x); if constexpr (monoid_v<M>) M::mp(ns[t].sum, x); } inline void push(int t) { if (ns[t].laz_flg) ns[t].laz_flg= false, propagate(ns[t].ch[0], ns[t].laz), propagate(ns[t].ch[1], ns[t].laz); } template <bool z, class P, size_t k> inline void set_range(int t, int m, Iter bg, Iter ed, const P *p) { auto [mn, mx]= std::minmax_element(bg, ed, [&](int a, int b) { return get_<z, k>(p[a]) < get_<z, k>(p[b]); }); ns[t].range[k][0]= get_<z, k>(p[*mn]), ns[t].range[k][1]= get_<z, k>(p[*mx]), ns[t].pos[k]= get_<z, k>(p[m]); } template <bool z, class P, size_t... I> inline void set_range_lp(int t, int m, Iter bg, Iter ed, const P *p, std::index_sequence<I...>) { (void)(int[]){(set_range<z, P, I>(t, m, bg, ed, p), 0)...}; } template <bool z, uint8_t div, class P> inline int build(int &ts, Iter bg, Iter ed, const P *p, const T &v= def_val()) { if (bg == ed) return -1; auto md= bg + (ed - bg) / 2; int t= ts++; std::nth_element(bg, md, ed, [&](int a, int b) { return get_<z, div>(p[a]) < get_<z, div>(p[b]); }), set_range_lp<z>(t, *md, bg, ed, p, std::make_index_sequence<K>()); if constexpr (z) { if constexpr (!std::is_void_v<M>) { if constexpr (std::tuple_size_v<P> == K + 1) ns[t].val= std::get<K>(p[*md]); else ns[t].val= v; } } else ns[t].val= p[*md].second; static constexpr uint8_t nx= div + 1 == K ? 0 : div + 1; ns[t].ch[0]= build<z, nx>(ts, bg, md, p, v), ns[t].ch[1]= build<z, nx>(ts, md + 1, ed, p, v); if constexpr (monoid_v<M>) update(t); return t; } template <bool z, uint8_t div, class P> inline int build(Iter bg, Iter ed, const P *p, int &ts) { if (bg == ed) return -1; auto md= bg + (ed - bg) / 2; int t= ts++; std::nth_element(bg, md, ed, [&](int a, int b) { return get_<z, div>(p[a]) < get_<z, div>(p[b]); }), set_range_lp<z>(t, bg, ed, p, std::make_index_sequence<K>()); if constexpr (z) { if constexpr (!std::is_void_v<M>) { if constexpr (std::tuple_size_v<P> == K + 1) ns[t].val= std::get<K>(p[t]); else ns[t].val= def_val(); } } else ns[t].val= p[t].second; static constexpr uint8_t nx= div + 1 == K ? 0 : div + 1; ns[t].ch[0]= build<z, nx>(bg, md, p, ts), ns[t].ch[1]= build<z, nx>(md + 1, ed, p, ts); if constexpr (monoid_v<M>) update(t); return t; } static inline auto in_cuboid(const Range &r) { return [r](const Pos &pos) { for (uint8_t k= K; k--;) if (r[k][1] < pos[k] || pos[k] < r[k][0]) return false; return true; }; } static inline auto out_cuboid(const Range &r) { return [r](const pos_t rr[K][2]) { for (uint8_t k= K; k--;) if (rr[k][1] < r[k][0] || r[k][1] < rr[k][0]) return true; return false; }; } static inline auto inall_cuboid(const Range &r) { return [r](const pos_t rr[K][2]) { for (uint8_t k= K; k--;) if (rr[k][0] < r[k][0] || r[k][1] < rr[k][1]) return false; return true; }; } static inline long_pos_t min_dist2(const pos_t r[K][2], const Pos &pos) { long_pos_t d2= 0, dx; for (uint8_t k= K; k--;) dx= std::clamp(pos[k], r[k][0], r[k][1]) - pos[k], d2+= dx * dx; return d2; } static inline auto in_ball(const Pos &c, long_pos_t r2) { return [c, r2](const Pos &pos) { long_pos_t d2= 0, dx; for (uint8_t k= K; k--;) dx= pos[k] - c[k], d2+= dx * dx; return d2 <= r2; }; } static inline auto inall_ball(const Pos &c, long_pos_t r2) { return [c, r2](const pos_t rr[K][2]) { long_pos_t d2= 0, dx0, dx1; for (uint8_t k= K; k--;) dx0= rr[k][0] - c[k], dx1= rr[k][1] - c[k], d2+= std::max(dx0 * dx0, dx1 * dx1); return d2 <= r2; }; } static inline auto out_ball(const Pos &c, long_pos_t r2) { return [c, r2](const pos_t r[K][2]) { return min_dist2(r, c) > r2; }; } inline void nns(int t, const Pos &pos, std::pair<int, long_pos_t> &ret) const { if (t == -1) return; long_pos_t d2= min_dist2(ns[t].range, pos); if (ret.first != -1 && d2 >= ret.second) return; long_pos_t dx= d2= 0; for (uint8_t k= K; k--;) dx= pos[k] - ns[t].pos[k], d2+= dx * dx; if (ret.first == -1 || d2 < ret.second) ret= {t, d2}; bool f= 0; if (auto [l, r]= ns[t].ch; l != -1 && r != -1) f= min_dist2(ns[l].range, pos) > min_dist2(ns[r].range, pos); nns(ns[t].ch[f], pos, ret), nns(ns[t].ch[!f], pos, ret); } template <class In, class Out> inline void col(int t, const In &in, const Out &out, std::vector<T> &ret) const { if (t == -1 || out(ns[t].range)) return; if (in(ns[t].pos)) ret.push_back(ns[t].val); col(ns[t].ch[0], in, out, ret), col(ns[t].ch[1], in, out, ret); } template <class In, class InAll, class Out> inline T fld(int t, const In &in, const InAll &inall, const Out &out) { if (t == -1 || out(ns[t].range)) return def_val(); if (inall(ns[t].range)) return ns[t].sum; if constexpr (dual_v<M>) push(t); T ret= M::op(fld(ns[t].ch[0], in, inall, out), fld(ns[t].ch[1], in, inall, out)); return in(ns[t].pos) ? M::op(ret, ns[t].val) : ret; } template <class In, class InAll, class Out> inline void app(int t, const In &in, const InAll &inall, const Out &out, const E &x) { if (t == -1 || out(ns[t].range)) return; if (inall(ns[t].range)) return propagate(t, x); if (push(t); in(ns[t].pos)) M::mp(ns[t].val, x); app(ns[t].ch[0], in, inall, out, x), app(ns[t].ch[1], in, inall, out, x); if constexpr (monoid_v<M>) update(t); } template <bool z> inline bool set(int t, const Pos &pos, const T &x) { if (t == -1) return false; bool isok= true; for (uint8_t k= K; k--; isok&= pos[k] == ns[t].pos[k]) if (ns[t].range[k][1] < pos[k] || pos[k] < ns[t].range[k][0]) return false; if constexpr (dual_v<M>) push(t); if (isok) { if constexpr (z) ns[t].val= x; else ns[t].val= M::op(ns[t].val, x); } else if (!(isok= set<z>(ns[t].ch[0], pos, x))) isok= set<z>(ns[t].ch[1], pos, x); if constexpr (monoid_v<M>) if (isok) update(t); return isok; } inline std::pair<T, bool> get(int t, const Pos &pos) { if (t == -1) return {T(), false}; bool myself= true; for (uint8_t k= K; k--; myself&= pos[k] == ns[t].pos[k]) if (ns[t].range[k][1] < pos[k] || pos[k] < ns[t].range[k][0]) return {T(), false}; if (myself) return {ns[t].val, true}; if constexpr (dual_v<M>) push(t); auto ret= get(ns[t].ch[0], pos); return !ret.second ? get(ns[t].ch[1], pos) : ret; } public: template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> KDTreeImpl(const P *p, size_t n): ns(n) { std::vector<int> ids(n); int ts= 0; std::iota(ids.begin(), ids.end(), 0), build<1, 0>(ts, ids.begin(), ids.end(), p); } template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> KDTreeImpl(const std::vector<P> &p): KDTreeImpl(p.data(), p.size()) {} template <class P, typename= std::enable_if_t<canbe_Pos<P>::value>> KDTreeImpl(const std::set<P> &p): KDTreeImpl(std::vector(p.begin(), p.end())) {} template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const P *p, size_t n, U v): ns(n) { std::vector<int> ids(n); int ts= 0; std::iota(ids.begin(), ids.end(), 0), build<1, 0>(ts, ids.begin(), ids.end(), p, v); } template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::vector<P> &p, U v): KDTreeImpl(p.data(), p.size(), v) {} template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::set<P> &p, U v): KDTreeImpl(std::vector(p.begin(), p.end()), v) {} template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::pair<P, U> *p, size_t n): ns(n) { std::vector<int> ids(n); int ts= 0; std::iota(ids.begin(), ids.end(), 0), build<0, 0>(ts, ids.begin(), ids.end(), p); } template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::vector<std::pair<P, U>> &p): KDTreeImpl(p.data(), p.size()) {} template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::map<P, U> &p): KDTreeImpl(std::vector(p.begin(), p.end())) {} std::vector<T> enum_cuboid(PK2... xs) { static_assert(!std::is_void_v<M>, "\"enum_cuboid\" is not available"); std::vector<T> ret; auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence<K>()); return col(-ns.empty(), in_cuboid(r), out_cuboid(r), ret), ret; } std::vector<T> enum_ball(PK... xs, pos_t r) const { static_assert(!std::is_void_v<M>, "\"enum_ball\" is not available"); std::vector<T> ret; long_pos_t r2= long_pos_t(r) * r; return col(-ns.empty(), in_ball({xs...}, r2), out_ball({xs...}, r2), ret), ret; } T fold_cuboid(PK2... xs) { static_assert(monoid_v<M>, "\"fold_cuboid\" is not available"); auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence<K>()); return fld(-ns.empty(), in_cuboid(r), inall_cuboid(r), out_cuboid(r)); } T fold_ball(PK... xs, pos_t r) { static_assert(monoid_v<M>, "\"fold_ball\" is not available"); long_pos_t r2= long_pos_t(r) * r; return fld(-ns.empty(), in_ball({xs...}, r2), inall_ball({xs...}, r2), out_ball({xs...}, r2)); } void apply_cuboid(PK2... xs, E a) { static_assert(dual_v<M>, "\"apply_cuboid\" is not available"); auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence<K>()); app(-ns.empty(), in_cuboid(r), inall_cuboid(r), out_cuboid(r), a); } void apply_ball(PK... xs, pos_t r, E a) { static_assert(dual_v<M>, "\"apply_ball\" is not available"); long_pos_t r2= long_pos_t(r) * r; app(-ns.empty(), in_ball({xs...}, r2), inall_ball({xs...}, r2), out({xs...}, r2), a); } void set(PK... xs, T v) { assert(ns.size()), assert(set<1>(0, {xs...}, v)); } void mul(PK... xs, T v) { static_assert(monoid_v<M>, "\"mul\" is not available"); assert(ns.size()), assert(set<0>(0, {xs...}, v)); } T get(PK... xs) { assert(ns.size()); auto [ret, flg]= get(0, {xs...}); return assert(flg), ret; } Pos nearest_neighbor(PK... xs) const { assert(ns.size()); std::pair<int, long_pos_t> ret= {-1, -1}; return nns(0, {xs...}, ret), ns[ret.first].pos; } }; template <class pos_t, size_t K, class M= void> using KDTree= KDTreeImpl<pos_t, K, M, to_tuple_t<std::array<pos_t, K>>, to_tuple_t<std::array<pos_t, K + K>>>; } using kdtree_internal::KDTree; using namespace std; struct RSQ { using T= long long; static T ti() { return 0; } static T op(const T &l, const T &r) { return l + r; } }; signed main() { cin.tie(0); ios::sync_with_stdio(0); int N, Q; cin >> N >> Q; vector<array<int, 2>> xy(N); vector<array<int, 3>> xyv(N); for (int i= 0; i < N; ++i) { int A; cin >> A; xy.push_back({i, A}); xyv.push_back({i, A, A}); } KDTree<int, 2, RSQ> kdt1(xy, 1), kdt2(xyv); while (Q--) { int L, R, X; cin >> L >> R >> X, --L, --R; cout << kdt2.fold_cuboid(L, R, 0, X - 1) + kdt1.fold_cuboid(L, R, X, 1e9 + 10) * X << '\n'; } return 0; }