結果
| 問題 |
No.1661 Sum is Prime (Hard Version)
|
| コンテスト | |
| ユーザー |
mkawa2
|
| 提出日時 | 2023-11-06 16:17:21 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 315 ms / 3,000 ms |
| コード長 | 2,360 bytes |
| コンパイル時間 | 305 ms |
| コンパイル使用メモリ | 82,176 KB |
| 実行使用メモリ | 84,832 KB |
| 最終ジャッジ日時 | 2024-12-30 17:01:19 |
| 合計ジャッジ時間 | 5,090 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
import sys
# sys.setrecursionlimit(1000005)
# sys.set_int_max_str_digits(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
# inf = -1-(-1 << 31)
inf = -1-(-1 << 63)
# md = 10**9+7
md = 998244353
# Thanks for https://judge.yosupo.jp/submission/126093
def prime_counting(n: int):
if n == 2: return 1
if n == 3: return 2
if n < 2: return 0
v = int(n**0.5)-1
while v*v <= n: v += 1
v -= 1
smalls = [i+1 >> 1 for i in range(v+1)]
s = v+1 >> 1
roughs = [i << 1 | 1 for i in range(s)]
larges = [int(n/(i << 1 | 1)+1) >> 1 for i in range(s)]
skip = bytearray([0]*(v+1))
pc = 0
for p in range(3, v+1, 2):
if skip[p]: continue
q = p*p
pc += 1
if q*q > n: break
skip[p] = 1
for i in range(q, v+1, p << 1): skip[i] = 1
ns = 0
for k in range(s):
i = roughs[k]
if skip[i]:
continue
d = i*p
if d <= v:
x = larges[smalls[d]-pc]
else:
x = smalls[int(n/d)]
larges[ns] = larges[k]+pc-x
roughs[ns] = i
ns += 1
s = ns
i = v
for j in range(int(v/p), p-1, -1):
c = smalls[j]-pc
e = j*p
while i >= e:
smalls[i] -= c
i -= 1
ret = larges[0]+((s+(pc-1 << 1))*(s-1) >> 1)-sum(larges[1:s])
for l in range(1, s):
q = roughs[l]
m = int(n/q)
e = smalls[int(m/q)]-pc
if e <= l: break
t = 0
for r in roughs[l+1:e+1]: t += smalls[int(m/r)]
ret += t-(e-l)*(pc+l-1)
return ret
l, r = LI()
ans = prime_counting(r)-prime_counting(l-1)
if l < r: ans += prime_counting(2*r-1)-prime_counting(l*2)
print(ans)
mkawa2