結果

問題 No.2536 同値性と充足可能性
ユーザー haihamabossuhaihamabossu
提出日時 2023-11-10 22:41:45
言語 Rust
(1.77.0)
結果
AC  
実行時間 90 ms / 2,000 ms
コード長 12,790 bytes
コンパイル時間 2,235 ms
コンパイル使用メモリ 196,052 KB
実行使用メモリ 21,704 KB
最終ジャッジ日時 2023-11-10 22:41:50
合計ジャッジ時間 4,494 ms
ジャッジサーバーID
(参考情報)
judge12 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,676 KB
testcase_01 AC 1 ms
6,676 KB
testcase_02 AC 1 ms
6,676 KB
testcase_03 AC 1 ms
6,676 KB
testcase_04 AC 1 ms
6,676 KB
testcase_05 AC 1 ms
6,676 KB
testcase_06 AC 1 ms
6,676 KB
testcase_07 AC 1 ms
6,676 KB
testcase_08 AC 1 ms
6,676 KB
testcase_09 AC 1 ms
6,676 KB
testcase_10 AC 1 ms
6,676 KB
testcase_11 AC 1 ms
6,676 KB
testcase_12 AC 1 ms
6,676 KB
testcase_13 AC 1 ms
6,676 KB
testcase_14 AC 1 ms
6,676 KB
testcase_15 AC 1 ms
6,676 KB
testcase_16 AC 1 ms
6,676 KB
testcase_17 AC 1 ms
6,676 KB
testcase_18 AC 1 ms
6,676 KB
testcase_19 AC 1 ms
6,676 KB
testcase_20 AC 5 ms
6,676 KB
testcase_21 AC 5 ms
6,676 KB
testcase_22 AC 5 ms
6,676 KB
testcase_23 AC 45 ms
14,260 KB
testcase_24 AC 43 ms
13,876 KB
testcase_25 AC 86 ms
21,548 KB
testcase_26 AC 76 ms
21,420 KB
testcase_27 AC 90 ms
21,704 KB
testcase_28 AC 72 ms
20,936 KB
testcase_29 AC 75 ms
21,064 KB
testcase_30 AC 70 ms
20,808 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//https://github.com/rust-lang-ja/ac-library-rs

pub mod internal_scc {
    pub struct Csr<E> {
        start: Vec<usize>,
        elist: Vec<E>,
    }

    impl<E> Csr<E>
    where
        E: Copy,
    {
        pub fn new(n: usize, edges: &[(usize, E)], init: E) -> Self {
            let mut csr = Csr {
                start: vec![0; n + 1],
                elist: vec![init; edges.len()],
            };
            for e in edges.iter() {
                csr.start[e.0 + 1] += 1;
            }
            for i in 1..=n {
                csr.start[i] += csr.start[i - 1];
            }
            let mut counter = csr.start.clone();
            for e in edges.iter() {
                csr.elist[counter[e.0]] = e.1;
                counter[e.0] += 1;
            }
            csr
        }
    }

    #[derive(Copy, Clone)]
    struct _Edge {
        to: usize,
    }

    /// Reference:
    /// R. Tarjan,
    /// Depth-First Search and Linear Graph Algorithms
    pub struct SccGraph {
        n: usize,
        edges: Vec<(usize, _Edge)>,
    }

    impl SccGraph {
        pub fn new(n: usize) -> Self {
            SccGraph { n, edges: vec![] }
        }

        pub fn num_vertices(&self) -> usize {
            self.n
        }

        pub fn add_edge(&mut self, from: usize, to: usize) {
            self.edges.push((from, _Edge { to }));
        }

        /// return pair of (# of scc, scc id)
        pub fn scc_ids(&self) -> (usize, Vec<usize>) {
            // In C++ ac-library, this function is implemented by using recursive lambda functions.
            // Instead, we use fn and struct for capturing environments.
            struct _Env {
                g: Csr<_Edge>,
                now_ord: usize,
                group_num: usize,
                visited: Vec<usize>,
                low: Vec<usize>,
                ord: Vec<Option<usize>>,
                ids: Vec<usize>,
            }
            let mut env = _Env {
                g: Csr::new(self.n, &self.edges, _Edge { to: 0 }),
                now_ord: 0,
                group_num: 0,
                visited: Vec::with_capacity(self.n),
                low: vec![0; self.n],
                ord: vec![None; self.n],
                ids: vec![0; self.n],
            };

            fn dfs(v: usize, n: usize, env: &mut _Env) {
                env.low[v] = env.now_ord;
                env.ord[v] = Some(env.now_ord);
                env.now_ord += 1;
                env.visited.push(v);

                for i in env.g.start[v]..env.g.start[v + 1] {
                    let to = env.g.elist[i].to;
                    if let Some(x) = env.ord[to] {
                        env.low[v] = std::cmp::min(env.low[v], x);
                    } else {
                        dfs(to, n, env);
                        env.low[v] = std::cmp::min(env.low[v], env.low[to]);
                    }
                }
                if env.low[v] == env.ord[v].unwrap() {
                    loop {
                        let u = *env.visited.last().unwrap();
                        env.visited.pop();
                        env.ord[u] = Some(n);
                        env.ids[u] = env.group_num;
                        if u == v {
                            break;
                        }
                    }
                    env.group_num += 1;
                }
            }
            for i in 0..self.n {
                if env.ord[i].is_none() {
                    dfs(i, self.n, &mut env);
                }
            }
            for x in env.ids.iter_mut() {
                *x = env.group_num - 1 - *x;
            }
            (env.group_num, env.ids)
        }

        pub fn scc(&self) -> Vec<Vec<usize>> {
            let ids = self.scc_ids();
            let group_num = ids.0;
            let mut counts = vec![0usize; group_num];
            for &x in ids.1.iter() {
                counts[x] += 1;
            }
            let mut groups: Vec<Vec<usize>> = (0..ids.0).map(|_| vec![]).collect();
            for i in 0..group_num {
                groups[i].reserve(counts[i]);
            }
            for i in 0..self.n {
                groups[ids.1[i]].push(i);
            }
            groups
        }
    }
}
pub mod twosat {
    //! A 2-SAT Solver.
    use crate::internal_scc;

    /// A 2-SAT Solver.
    ///
    /// For variables $x_0, x_1, \ldots, x_{N - 1}$ and clauses with from
    ///
    /// \\[
    ///   (x_i = f) \lor (x_j = g)
    /// \\]
    ///
    /// it decides whether there is a truth assignment that satisfies all clauses.
    ///
    /// # Example
    ///
    /// ```
    /// #![allow(clippy::many_single_char_names)]
    ///
    /// use ac_library::TwoSat;
    /// use proconio::{input, marker::Bytes, source::once::OnceSource};
    ///
    /// input! {
    ///     from OnceSource::from(
    ///         "3\n\
    ///          3\n\
    ///          a b\n\
    ///          !b c\n\
    ///          !a !a\n",
    ///     ),
    ///     n: usize,
    ///     pqs: [(Bytes, Bytes)],
    /// }
    ///
    /// let mut twosat = TwoSat::new(n);
    ///
    /// for (p, q) in pqs {
    ///     fn parse(s: &[u8]) -> (usize, bool) {
    ///         match *s {
    ///             [c] => ((c - b'a').into(), true),
    ///             [b'!', c] => ((c - b'a').into(), false),
    ///             _ => unreachable!(),
    ///         }
    ///     }
    ///     let ((i, f), (j, g)) = (parse(&p), parse(&q));
    ///     twosat.add_clause(i, f, j, g);
    /// }
    ///
    /// assert!(twosat.satisfiable());
    /// assert_eq!(twosat.answer(), [false, true, true]);
    /// ```
    pub struct TwoSat {
        n: usize,
        scc: internal_scc::SccGraph,
        answer: Vec<bool>,
    }
    impl TwoSat {
        /// Creates a new `TwoSat` of `n` variables and 0 clauses.
        ///
        /// # Constraints
        ///
        /// - $0 \leq n \leq 10^8$
        ///
        /// # Complexity
        ///
        /// - $O(n)$
        pub fn new(n: usize) -> Self {
            TwoSat {
                n,
                answer: vec![false; n],
                scc: internal_scc::SccGraph::new(2 * n),
            }
        }
        /// Adds a clause $(x_i = f) \lor (x_j = g)$.
        ///
        /// # Constraints
        ///
        /// - $0 \leq i < n$
        /// - $0 \leq j < n$
        ///
        /// # Panics
        ///
        /// Panics if the above constraints are not satisfied.
        ///
        /// # Complexity
        ///
        /// - $O(1)$ amortized
        pub fn add_clause(&mut self, i: usize, f: bool, j: usize, g: bool) {
            assert!(i < self.n && j < self.n);
            self.scc.add_edge(2 * i + !f as usize, 2 * j + g as usize);
            self.scc.add_edge(2 * j + !g as usize, 2 * i + f as usize);
        }
        /// Returns whether there is a truth assignment that satisfies all clauses.
        ///
        /// # Complexity
        ///
        /// - $O(n + m)$ where $m$ is the number of added clauses
        pub fn satisfiable(&mut self) -> bool {
            let id = self.scc.scc_ids().1;
            for i in 0..self.n {
                if id[2 * i] == id[2 * i + 1] {
                    return false;
                }
                self.answer[i] = id[2 * i] < id[2 * i + 1];
            }
            true
        }
        /// Returns a truth assignment that satisfies all clauses **of the last call of [`satisfiable`]**.
        ///
        /// # Constraints
        ///
        /// - [`satisfiable`] is called after adding all clauses and it has returned `true`.
        ///
        /// # Complexity
        ///
        /// - $O(n)$
        ///
        /// [`satisfiable`]: #method.satisfiable
        pub fn answer(&self) -> &[bool] {
            &self.answer
        }
    }

    #[cfg(test)]
    mod tests {
        #![allow(clippy::many_single_char_names)]
        use super::*;
        #[test]
        fn solve_alpc_h_sample1() {
            // https://atcoder.jp/contests/practice2/tasks/practice2_h

            let (n, d) = (3, 2);
            let x = [1, 2, 0i32];
            let y = [4, 5, 6];

            let mut t = TwoSat::new(n);

            for i in 0..n {
                for j in i + 1..n {
                    if (x[i] - x[j]).abs() < d {
                        t.add_clause(i, false, j, false);
                    }
                    if (x[i] - y[j]).abs() < d {
                        t.add_clause(i, false, j, true);
                    }
                    if (y[i] - x[j]).abs() < d {
                        t.add_clause(i, true, j, false);
                    }
                    if (y[i] - y[j]).abs() < d {
                        t.add_clause(i, true, j, true);
                    }
                }
            }
            assert!(t.satisfiable());
            let answer = t.answer();
            let mut res = vec![];
            for (i, &v) in answer.iter().enumerate() {
                if v {
                    res.push(x[i])
                } else {
                    res.push(y[i]);
                }
            }

            //Check the min distance between flags
            res.sort_unstable();
            let mut min_distance = i32::max_value();
            for i in 1..res.len() {
                min_distance = std::cmp::min(min_distance, res[i] - res[i - 1]);
            }
            assert!(min_distance >= d);
        }

        #[test]
        fn solve_alpc_h_sample2() {
            // https://atcoder.jp/contests/practice2/tasks/practice2_h

            let (n, d) = (3, 3);
            let x = [1, 2, 0i32];
            let y = [4, 5, 6];

            let mut t = TwoSat::new(n);

            for i in 0..n {
                for j in i + 1..n {
                    if (x[i] - x[j]).abs() < d {
                        t.add_clause(i, false, j, false);
                    }
                    if (x[i] - y[j]).abs() < d {
                        t.add_clause(i, false, j, true);
                    }
                    if (y[i] - x[j]).abs() < d {
                        t.add_clause(i, true, j, false);
                    }
                    if (y[i] - y[j]).abs() < d {
                        t.add_clause(i, true, j, true);
                    }
                }
            }
            assert!(!t.satisfiable());
        }
    }
}
use twosat::*;

pub mod scanner {

    pub struct Scanner {
        buf: Vec<String>,
    }

    impl Scanner {
        pub fn new() -> Self {
            Self { buf: vec![] }
        }

        pub fn new_from(source: &str) -> Self {
            let source = String::from(source);
            let buf = Self::split(source);
            Self { buf }
        }

        pub fn next<T: std::str::FromStr>(&mut self) -> T {
            loop {
                if let Some(x) = self.buf.pop() {
                    return x.parse().ok().expect("");
                }
                let mut source = String::new();
                std::io::stdin().read_line(&mut source).expect("");
                self.buf = Self::split(source);
            }
        }

        fn split(source: String) -> Vec<String> {
            source
                .split_whitespace()
                .rev()
                .map(String::from)
                .collect::<Vec<_>>()
        }
    }
}

use crate::scanner::Scanner;
use crate::TwoSat;
use std::io::Write;
fn main() {
    let mut scanner = Scanner::new();
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    let t: usize = 1;
    for _ in 0..t {
        solve(&mut scanner, &mut out);
    }
}
fn solve(scanner: &mut Scanner, out: &mut std::io::BufWriter<std::io::StdoutLock>) {
    let n = scanner.next::<usize>();
    let m = scanner.next::<usize>();
    let mut t = TwoSat::new(n);
    for _ in 0..m {
        let i = scanner.next::<usize>() - 1;
        let e = scanner.next::<String>();
        let j = scanner.next::<usize>() - 1;
        if &e == "<==>" {
            t.add_clause(i, false, j, true);
            t.add_clause(i, true, j, false);
        } else {
            t.add_clause(i, false, j, false);
            t.add_clause(i, true, j, true);
        }
    }
    if !t.satisfiable() {
        writeln!(out, "No").unwrap();
        return;
    }
    writeln!(out, "Yes").unwrap();
    let mut ans1 = vec![];
    let mut ans2 = vec![];
    for i in 0..n {
        if t.answer()[i] {
            ans1.push(i + 1);
        } else {
            ans2.push(i + 1);
        }
    }
    let ans = if ans1.len() > ans2.len() { ans1 } else { ans2 };
    writeln!(out, "{}", ans.len()).unwrap();
    for i in 0..ans.len() {
        if i > 0 {
            write!(out, " ").unwrap();
        }
        write!(out, "{}", ans[i]).unwrap();
    }
    writeln!(out, "").unwrap();
}
0