結果
| 問題 |
No.2529 Treasure Hunter
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-11-19 09:47:48 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,157 bytes |
| コンパイル時間 | 1,220 ms |
| コンパイル使用メモリ | 132,328 KB |
| 最終ジャッジ日時 | 2025-02-17 22:32:31 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 11 WA * 11 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <deque>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <unordered_map>
#include <unordered_set>
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt& operator+=(const ModInt& p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt& operator-=(const ModInt& p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt& operator*=(const ModInt& p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt& operator/=(const ModInt& p) {
*this *= p.inverse();
return *this;
}
ModInt& operator^=(long long p) { // quick_pow here:3
ModInt res = 1;
for (; p; p >>= 1) {
if (p & 1) res *= *this;
*this *= *this;
}
return *this = res;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt& p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt& p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt& p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt& p) const { return ModInt(*this) /= p; }
ModInt operator^(long long p) const { return ModInt(*this) ^= p; }
bool operator==(const ModInt& p) const { return x == p.x; }
bool operator!=(const ModInt& p) const { return x != p.x; }
explicit operator int() const { return x; } // added by QCFium
ModInt operator=(const int p) {
x = p;
return ModInt(*this);
} // added by QCFium
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return ModInt(u);
}
friend std::ostream& operator<<(std::ostream& os, const ModInt<mod>& p) {
return os << p.x;
}
friend std::istream& operator>>(std::istream& is, ModInt<mod>& a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
using mint = ModInt<998244353>;
// const int MOD = 1000000007;
const int MOD = 998244353;
struct MComb {
std::vector<mint> fact;
std::vector<mint> inversed;
MComb(int n) { // O(n+log(mod))
fact = std::vector<mint>(n + 1, 1);
for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i);
inversed = std::vector<mint>(n + 1);
inversed[n] = fact[n] ^ (MOD - 2);
for (int i = n - 1; i >= 0; i--)
inversed[i] = inversed[i + 1] * mint(i + 1);
}
mint ncr(int n, int r) {
if (n < r) return 0;
return (fact[n] * inversed[r] * inversed[n - r]);
}
mint npr(int n, int r) { return (fact[n] * inversed[n - r]); }
mint nhr(int n, int r) {
assert(n + r - 1 < (int)fact.size());
return ncr(n + r - 1, r);
}
};
mint ncr(int n, int r) {
mint res = 1;
for (int i = n - r + 1; i <= n; i++) res *= i;
for (int i = 1; i <= r; i++) res /= i;
return res;
}
template <typename T>
std::vector<T> get_divisors(T x, bool sorted = true) {
std::vector<T> res;
for (T i = 1; i <= x / i; i++)
if (x % i == 0) {
res.push_back(i);
if (i != x / i) res.push_back(x / i);
}
if (sorted) std::sort(res.begin(), res.end());
return res;
}
template <typename T>
struct FenwickTree {
std::vector<T> bit;
int n;
FenwickTree(int _n) : n(_n), bit(_n) {}
T sum(int r) {
int ret = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r];
return ret;
}
T sum(int l, int r) {
assert(l <= r);
return sum(r) - sum(l - 1);
} // [l, r]
void add(int idx, int delta) {
for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta;
}
};
template <typename T>
struct DSU {
std::vector<T> f, siz;
DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); }
T leader(T x) {
while (x != f[x]) x = f[x] = f[f[x]];
return x;
}
bool same(T x, T y) { return leader(x) == leader(y); }
bool merge(T x, T y) {
x = leader(x);
y = leader(y);
if (x == y) return false;
siz[x] += siz[y];
f[y] = x;
return true;
}
T size(int x) { return siz[leader(x)]; }
};
void solve() {
int n, m;
std::cin >> n >> m;
std::vector dp(m, std::vector(3, (mint)0));
dp[0][0] = 1;
dp[0][1] = n;
dp[0][2] = (n < 4) ? 0 : (mint)n * (n - 1) / 2 - n;
for (int i = 0; i < m - 1; i++) {
dp[i + 1][0] = dp[i][0] + dp[i][1] + dp[i][2];
dp[i + 1][1] = dp[i][0] * n + dp[i][1] * (n - 1) + dp[i][2] * (n - 2);
if (n < 4)
dp[i + 1][2] = 0;
else {
dp[i + 1][2] += dp[i][0] * (n * (n - 1) / 2 - n);
dp[i + 1][2] += dp[i][1] * ((n - 1) * (n - 2) / 2 - (n - 2));
dp[i + 1][2] += dp[i][2] * ((n - 2) * (n - 3) / 2 - (n - 4));
}
}
std::cout << dp[m - 1][0] + dp[m - 1][1] + dp[m - 1][2] << '\n';
}
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
int t = 1;
std::cin >> t;
while (t--) solve();
}