結果
問題 | No.1970 ひよこ鑑定士 |
ユーザー | vwxyz |
提出日時 | 2023-11-21 03:10:00 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 1,107 ms / 2,000 ms |
コード長 | 3,811 bytes |
コンパイル時間 | 511 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 43,648 KB |
最終ジャッジ日時 | 2024-09-26 06:53:05 |
合計ジャッジ時間 | 12,411 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 42 ms
12,032 KB |
testcase_01 | AC | 50 ms
12,160 KB |
testcase_02 | AC | 43 ms
12,032 KB |
testcase_03 | AC | 44 ms
12,032 KB |
testcase_04 | AC | 47 ms
12,032 KB |
testcase_05 | AC | 43 ms
12,032 KB |
testcase_06 | AC | 43 ms
12,160 KB |
testcase_07 | AC | 85 ms
13,184 KB |
testcase_08 | AC | 1,092 ms
43,136 KB |
testcase_09 | AC | 439 ms
23,808 KB |
testcase_10 | AC | 514 ms
26,112 KB |
testcase_11 | AC | 179 ms
16,128 KB |
testcase_12 | AC | 640 ms
29,952 KB |
testcase_13 | AC | 737 ms
32,640 KB |
testcase_14 | AC | 907 ms
37,888 KB |
testcase_15 | AC | 81 ms
13,056 KB |
testcase_16 | AC | 139 ms
14,976 KB |
testcase_17 | AC | 1,100 ms
43,520 KB |
testcase_18 | AC | 1,099 ms
43,520 KB |
testcase_19 | AC | 1,103 ms
43,392 KB |
testcase_20 | AC | 1,098 ms
43,648 KB |
testcase_21 | AC | 1,107 ms
43,520 KB |
ソースコード
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys import time from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines write=sys.stdout.write #import pypyjit #pypyjit.set_param('max_unroll_recursion=-1') #sys.set_int_max_str_digits(10**9) def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=None): self.p=p self.e=e if self.e==None: self.mod=self.p else: self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: #assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] if self.e==None: for i in range(1,N+1): self.factorial.append(self.factorial[-1]*i%self.mod) else: self.cnt=[0]*(N+1) for i in range(1,N+1): self.cnt[i]=self.cnt[i-1] ii=i while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append(self.factorial[-1]*ii%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Build_Inverse(self,N): self.inverse=[None]*(N+1) assert self.p>N self.inverse[1]=1 for n in range(2,N+1): if n%self.p==0: continue a,b=divmod(self.mod,n) self.inverse[n]=(-a*self.inverse[b])%self.mod def Inverse(self,n): return self.inverse[n] def Fact(self,N): if N<0: return 0 retu=self.factorial[N] if self.e!=None and self.cnt[N]: retu*=pow(self.p,self.cnt[N],self.mod)%self.mod retu%=self.mod return retu def Fact_Inve(self,N): if self.e!=None and self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod if self.e!=None: cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu N,K=map(int,readline().split()) mod=998244353 MD=MOD(mod) MD.Build_Fact(2*N) ans=MD.Comb(2*N,N) for i in range(-N,N+1): if i%(K+1)==0: ans-=MD.Comb(2*N,N-i)*K else: ans+=MD.Comb(2*N,N-i) ans%=mod for i in range(-N,N+1): if i%K==0: ans+=MD.Comb(2*N,N-i)*(K-1) else: ans-=MD.Comb(2*N,N-i) ans%=mod print(ans)