結果

問題 No.1396 Giri
ユーザー vwxyzvwxyz
提出日時 2023-11-21 03:30:00
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 367 ms / 2,000 ms
コード長 3,251 bytes
コンパイル時間 261 ms
コンパイル使用メモリ 12,800 KB
実行使用メモリ 26,112 KB
最終ジャッジ日時 2024-09-26 06:53:27
合計ジャッジ時間 4,580 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 39 ms
12,032 KB
testcase_01 AC 39 ms
11,904 KB
testcase_02 AC 367 ms
25,984 KB
testcase_03 AC 41 ms
12,032 KB
testcase_04 AC 39 ms
11,904 KB
testcase_05 AC 354 ms
25,728 KB
testcase_06 AC 38 ms
11,776 KB
testcase_07 AC 39 ms
11,776 KB
testcase_08 AC 39 ms
11,776 KB
testcase_09 AC 39 ms
11,776 KB
testcase_10 AC 38 ms
11,776 KB
testcase_11 AC 38 ms
11,904 KB
testcase_12 AC 40 ms
11,904 KB
testcase_13 AC 38 ms
12,032 KB
testcase_14 AC 40 ms
12,032 KB
testcase_15 AC 40 ms
12,032 KB
testcase_16 AC 39 ms
11,776 KB
testcase_17 AC 42 ms
12,160 KB
testcase_18 AC 63 ms
13,184 KB
testcase_19 AC 193 ms
19,584 KB
testcase_20 AC 253 ms
22,144 KB
testcase_21 AC 310 ms
24,448 KB
testcase_22 AC 320 ms
25,728 KB
testcase_23 AC 341 ms
25,984 KB
testcase_24 AC 334 ms
26,112 KB
testcase_25 AC 345 ms
25,984 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
write=sys.stdout.write
#import pypyjit
#pypyjit.set_param('max_unroll_recursion=-1')
#sys.set_int_max_str_digits(10**9)

class Prime:
    def __init__(self,N):
        assert N<=10**8
        self.smallest_prime_factor=[None]*(N+1)
        for i in range(2,N+1,2):
            self.smallest_prime_factor[i]=2
        n=int(N**.5)+1
        for p in range(3,n,2):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
                for i in range(p**2,N+1,2*p):
                    if self.smallest_prime_factor[i]==None:
                        self.smallest_prime_factor[i]=p
        for p in range(n,N+1):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
        self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]

    def Factorize(self,N):
        assert N>=1
        factors=defaultdict(int)
        if N<=len(self.smallest_prime_factor)-1:
            while N!=1:
                factors[self.smallest_prime_factor[N]]+=1
                N//=self.smallest_prime_factor[N]
        else:
            for p in self.primes:
                while N%p==0:
                    N//=p
                    factors[p]+=1
                if N<p*p:
                    if N!=1:
                        factors[N]+=1
                    break
                if N<=len(self.smallest_prime_factor)-1:
                    while N!=1:
                        factors[self.smallest_prime_factor[N]]+=1
                        N//=self.smallest_prime_factor[N]
                    break
            else:
                if N!=1:
                    factors[N]+=1
        return factors

    def Divisors(self,N):
        assert N>0
        divisors=[1]
        for p,e in self.Factorize(N).items():
            pow_p=[1]
            for _ in range(e):
                pow_p.append(pow_p[-1]*p)
            divisors=[i*j for i in divisors for j in pow_p]
        return divisors

    def Is_Prime(self,N):
        return N==self.smallest_prime_factor[N]

    def Totient(self,N):
        for p in self.Factorize(N).keys():
            N*=p-1
            N//=p
        return N

    def Mebius(self,N):
        fact=self.Factorize(N)
        for e in fact.values():
            if e>=2:
                return 0
        else:
            if len(fact)%2==0:
                return 1
            else:
                return -1

N=int(readline())
Pr=Prime(N)
mod=998244353
ans=1
for p in Pr.primes[:-1]:
    pp=1
    while pp*p<=N:
        pp*=p
    ans*=pp
    ans%=mod
print(ans)
0