結果
問題 | No.473 和と積の和 |
ユーザー |
![]() |
提出日時 | 2023-11-21 05:52:30 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,434 bytes |
コンパイル時間 | 129 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 25,988 KB |
最終ジャッジ日時 | 2024-09-26 07:01:15 |
合計ジャッジ時間 | 4,670 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 TLE * 1 |
other | -- * 43 |
ソースコード
import bisectimport copyimport decimalimport fractionsimport heapqimport itertoolsimport mathimport randomimport sysimport timefrom collections import Counter,deque,defaultdictfrom functools import lru_cache,reducefrom heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_maxdef _heappush_max(heap,item):heap.append(item)heapq._siftdown_max(heap, 0, len(heap)-1)def _heappushpop_max(heap, item):if heap and item < heap[0]:item, heap[0] = heap[0], itemheapq._siftup_max(heap, 0)return itemfrom math import gcd as GCDread=sys.stdin.readreadline=sys.stdin.readlinereadlines=sys.stdin.readlineswrite=sys.stdout.write#import pypyjit#pypyjit.set_param('max_unroll_recursion=-1')#sys.set_int_max_str_digits(10**9)def Extended_Euclid(n,m):stack=[]while m:stack.append((n,m))n,m=m,n%mif n>=0:x,y=1,0else:x,y=-1,0for i in range(len(stack)-1,-1,-1):n,m=stack[i]x,y=y,x-(n//m)*yreturn x,yclass MOD:def __init__(self,p,e=None):self.p=pself.e=eif self.e==None:self.mod=self.pelse:self.mod=self.p**self.edef Pow(self,a,n):a%=self.modif n>=0:return pow(a,n,self.mod)else:#assert math.gcd(a,self.mod)==1x=Extended_Euclid(a,self.mod)[0]return pow(x,-n,self.mod)def Build_Fact(self,N):assert N>=0self.factorial=[1]if self.e==None:for i in range(1,N+1):self.factorial.append(self.factorial[-1]*i%self.mod)else:self.cnt=[0]*(N+1)for i in range(1,N+1):self.cnt[i]=self.cnt[i-1]ii=iwhile ii%self.p==0:ii//=self.pself.cnt[i]+=1self.factorial.append(self.factorial[-1]*ii%self.mod)self.factorial_inve=[None]*(N+1)self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)for i in range(N-1,-1,-1):ii=i+1while ii%self.p==0:ii//=self.pself.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.moddef Build_Inverse(self,N):self.inverse=[None]*(N+1)assert self.p>Nself.inverse[1]=1for n in range(2,N+1):if n%self.p==0:continuea,b=divmod(self.mod,n)self.inverse[n]=(-a*self.inverse[b])%self.moddef Inverse(self,n):return self.inverse[n]def Fact(self,N):if N<0:return 0retu=self.factorial[N]if self.e!=None and self.cnt[N]:retu*=pow(self.p,self.cnt[N],self.mod)%self.modretu%=self.modreturn retudef Fact_Inve(self,N):if self.e!=None and self.cnt[N]:return Nonereturn self.factorial_inve[N]def Comb(self,N,K,divisible_count=False):if K<0 or K>N:return 0retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.modif self.e!=None:cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]if divisible_count:return retu,cntelse:retu*=pow(self.p,cnt,self.mod)retu%=self.modreturn retudef Factorize(N):assert N>=1factors=defaultdict(int)for p in range(2,N):if p**2>N:breakwhile N%p==0:factors[p]+=1N//=pif N!=1:factors[N]+=1return factorsdef Divisors(N):divisors=[]for i in range(1,N+1):if i**2>=N:breakelif N%i==0:divisors.append(i)if i**2==N:divisors+=[i]+[N//i for i in divisors[::-1]]else:divisors+=[N//i for i in divisors[::-1]]return divisorsN,X=map(int,readline().split())X+=1D=Divisors(X)dp={(d,d):1 for d in D if d!=1 and d**N<=X}for n in range(2,N+1):prev=dpdp=defaultdict(int)for (p,mi),c in prev.items():for d in D:if d<mi:continueif p*d**(N-n)>X:continueif X%(d*p):continuedp[(d*p,d)]+=cans=sum(c for (p,mi),c in dp.items() if p==X)print(ans)