結果
| 問題 |
No.1170 Never Want to Walk
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-11-22 13:39:28 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 357 ms / 2,000 ms |
| コード長 | 5,797 bytes |
| コンパイル時間 | 13,877 ms |
| コンパイル使用メモリ | 235,484 KB |
| 実行使用メモリ | 30,848 KB |
| 最終ジャッジ日時 | 2024-09-26 07:30:12 |
| 合計ジャッジ時間 | 19,690 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 37 |
ソースコード
package main
import (
"bufio"
"fmt"
"math/bits"
"os"
"sort"
"strings"
)
// No.1170 Never Want to Walk
// https://yukicoder.me/problems/no/1170
// 数轴上有n个车站,第i个位置在xi
// 如果两个车站之间的距离di与dj满足 A<=|di-dj|<=B,则这两个车站可以相互到达,否则不能相互到达
// 对每个车站,求出从该车站出发,可以到达的车站的数量
// 1<=n<=2e5 0<=A<=B<=1e9 0<=x1<=x2<...<=xn<=1e9
//
// !将序列搬到线段树上加速区间操作.
func main() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, A, B int
fmt.Fscan(in, &n, &A, &B)
positions := make([]int, n)
for i := 0; i < n; i++ {
fmt.Fscan(in, &positions[i])
}
D := NewDivideInterval(n)
uf := NewUnionFindArray(D.Size())
weights := make([]int, D.Size())
for i := 0; i < n; i++ {
weights[D.Id(i)] = 1
}
f := func(big, small int) {
weights[big] += weights[small]
}
var dfs func(int) // 线段树上dfs
dfs = func(cur int) {
if D.IsLeaf(cur) {
return
}
for k := 0; k < 2; k++ {
child := cur<<1 | k
if !uf.IsConnected(cur, child) {
uf.UnionWithCallback(cur, child, f)
dfs(child)
}
}
}
for i := 0; i < n; i++ {
start := sort.SearchInts(positions, positions[i]+A)
end := sort.SearchInts(positions, positions[i]+B+1)
D.EnumerateSegment(start, end, func(segmentId int) {
uf.UnionWithCallback(D.Id(i), segmentId, f)
dfs(segmentId)
})
}
for i := 0; i < n; i++ {
fmt.Fprintln(out, weights[uf.Find(D.Id(i))])
}
}
type DivideInterval struct {
Offset int // 线段树中一共2*offset个节点,offset+i对应原来的第i个节点.
n int
}
// 线段树分割区间.
// 将长度为n的序列搬到长度为2*offset的线段树上, 以实现快速的区间操作.
func NewDivideInterval(n int) *DivideInterval {
offset := 1
for offset < n {
offset <<= 1
}
return &DivideInterval{Offset: offset, n: n}
}
// 获取原下标为i的元素在树中的(叶子)编号.
func (d *DivideInterval) Id(rawIndex int) int {
return rawIndex + d.Offset
}
// O(logn) 顺序遍历`[start,end)`区间对应的线段树节点.
func (d *DivideInterval) EnumerateSegment(start, end int, f func(segmentId int)) {
if !(0 <= start && start <= end && end <= d.n) {
panic("invalid range")
}
for _, i := range d.getSegmentIds(start, end) {
f(i)
}
}
// O(n) 从根向叶子方向push.
func (d *DivideInterval) PushDown(f func(parent, child int)) {
for p := 1; p < d.Offset; p++ {
f(p, p<<1)
f(p, p<<1|1)
}
}
// O(n) 从叶子向根方向update.
func (d *DivideInterval) PushUp(f func(parent, child1, child2 int)) {
for p := d.Offset - 1; p > 0; p-- {
f(p, p<<1, p<<1|1)
}
}
// 线段树的节点个数.
func (d *DivideInterval) Size() int {
return d.Offset + d.n
}
func (d *DivideInterval) IsLeaf(segmentId int) bool {
return segmentId >= d.Offset
}
func (d *DivideInterval) Depth(u int) int {
if u == 0 {
return 0
}
return bits.Len(uint(u)) - 1
}
// 线段树(完全二叉树)中两个节点的最近公共祖先(两个二进制数字的最长公共前缀).
func (d *DivideInterval) Lca(u, v int) int {
if u == v {
return u
}
if u > v {
u, v = v, u
}
depth1 := d.Depth(u)
depth2 := d.Depth(v)
diff := u ^ (v >> (depth2 - depth1))
if diff == 0 {
return u
}
len := bits.Len(uint(diff))
return u >> len
}
func (d *DivideInterval) getSegmentIds(start, end int) []int {
if !(0 <= start && start <= end && end <= d.n) {
panic("invalid range")
}
leftRes, rightRes := []int{}, []int{}
for start, end = start+d.Offset, end+d.Offset; start < end; start, end = start>>1, end>>1 {
if start&1 == 1 {
leftRes = append(leftRes, start)
start++
}
if end&1 == 1 {
end--
rightRes = append(rightRes, end)
}
}
for i := len(rightRes) - 1; i >= 0; i-- {
leftRes = append(leftRes, rightRes[i])
}
return leftRes
}
//
//
// NewUnionFindWithCallback ...
func NewUnionFindArray(n int) *_UnionFindArray {
parent, rank := make([]int, n), make([]int, n)
for i := 0; i < n; i++ {
parent[i] = i
rank[i] = 1
}
return &_UnionFindArray{
Part: n,
rank: rank,
n: n,
parent: parent,
}
}
type _UnionFindArray struct {
// 连通分量的个数
Part int
rank []int
n int
parent []int
}
func (ufa *_UnionFindArray) Union(key1, key2 int) bool {
root1, root2 := ufa.Find(key1), ufa.Find(key2)
if root1 == root2 {
return false
}
if ufa.rank[root1] > ufa.rank[root2] {
root1, root2 = root2, root1
}
ufa.parent[root1] = root2
ufa.rank[root2] += ufa.rank[root1]
ufa.Part--
return true
}
func (ufa *_UnionFindArray) UnionWithCallback(key1, key2 int, cb func(big, small int)) bool {
root1, root2 := ufa.Find(key1), ufa.Find(key2)
if root1 == root2 {
return false
}
if ufa.rank[root1] > ufa.rank[root2] {
root1, root2 = root2, root1
}
ufa.parent[root1] = root2
ufa.rank[root2] += ufa.rank[root1]
ufa.Part--
cb(root2, root1)
return true
}
func (ufa *_UnionFindArray) Find(key int) int {
for ufa.parent[key] != key {
ufa.parent[key] = ufa.parent[ufa.parent[key]]
key = ufa.parent[key]
}
return key
}
func (ufa *_UnionFindArray) IsConnected(key1, key2 int) bool {
return ufa.Find(key1) == ufa.Find(key2)
}
func (ufa *_UnionFindArray) GetGroups() map[int][]int {
groups := make(map[int][]int)
for i := 0; i < ufa.n; i++ {
root := ufa.Find(i)
groups[root] = append(groups[root], i)
}
return groups
}
func (ufa *_UnionFindArray) Size(key int) int {
return ufa.rank[ufa.Find(key)]
}
func (ufa *_UnionFindArray) String() string {
sb := []string{"UnionFindArray:"}
for root, member := range ufa.GetGroups() {
cur := fmt.Sprintf("%d: %v", root, member)
sb = append(sb, cur)
}
sb = append(sb, fmt.Sprintf("Part: %d", ufa.Part))
return strings.Join(sb, "\n")
}