結果
問題 | No.2558 中国剰余定理 |
ユーザー | deuteridayo |
提出日時 | 2023-11-23 13:53:31 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 33 ms / 2,000 ms |
コード長 | 5,026 bytes |
コンパイル時間 | 4,787 ms |
コンパイル使用メモリ | 265,304 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-26 08:03:05 |
合計ジャッジ時間 | 5,391 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 9 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 33 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 9 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 5 ms
5,376 KB |
testcase_11 | AC | 6 ms
5,376 KB |
testcase_12 | AC | 3 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 9 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 11 ms
5,376 KB |
testcase_19 | AC | 14 ms
5,376 KB |
testcase_20 | AC | 4 ms
5,376 KB |
testcase_21 | AC | 7 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 10 ms
5,376 KB |
testcase_25 | AC | 11 ms
5,376 KB |
testcase_26 | AC | 3 ms
5,376 KB |
testcase_27 | AC | 3 ms
5,376 KB |
testcase_28 | AC | 8 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 4 ms
5,376 KB |
testcase_31 | AC | 3 ms
5,376 KB |
ソースコード
#include<bits/stdc++.h>#include<atcoder/all>using namespace std;using namespace atcoder;using lint = long long;using ulint = unsigned long long;using llint = __int128_t;#define endl '\n'int const INF = 1<<30;lint const INF64 = 1LL<<61;lint const mod107 = 1e9+7;using mint107 = modint1000000007;long const mod = 998244353;using mint = modint998244353;lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}}lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}}lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;}lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);}lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;}lint chmin(vector<lint>&v){lint ans = INF64;for(lint i:v){ans = min(ans, i);}return ans;}lint chmax(vector<lint>&v){lint ans = -INF64;for(lint i:v){ans = max(ans, i);}return ans;}double dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));}string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c +ans;}}return ans;}string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;}vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j]<= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}}lint Kai[20000001]; bool firstCallnCr = true;lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr =false;} if(n<0)return 0;if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;}#define rep(i, n) for(int i = 0; i < n; i++)#define repp(i, x, y) for(int i = x; i < y; i++)#define vec vector#define pb push_back#define se second#define fi first#define all(x) x.begin(),x.end()#define rall(x) x.rbegin(),x.rend()unsigned long Rand() {static unsigned long x=123456789, y=362436069, z=521288629, w=88675123;unsigned long t=(x^(x<<11));x=y; y=z; z=w;return ( w=(w^(w>>19))^(t^(t>>8)) );}struct Point {lint x, y;int quad;Point(lint X, lint Y) {x = X;y = Y;quad = getQuadrant();}int getQuadrant() {if(x >= 0) {if(y >= 0) return 1;else return 4;} else {if(y >= 0) return 2;else return 3;}}};bool operator<(const Point &left, const Point &right) {if(left.quad == right.quad) {return left.y * right.x < left.x * right.y;} else {return left.quad < right.quad;}}struct Frac {lint upper, lower;Frac() {Frac(0,1);}Frac(lint u, lint l) {assert(l != 0);if(u <= 0 && l < 0) {upper = -u;lower = -l;} else {upper = u;lower = l;}reduction();}Frac(lint u) {upper = u;lower = 1;}void reduction() {if(upper != 0) {lint g = gcd(abs(upper), abs(lower));upper /= g;lower /= g;if(lower < 0) {lower *= -1;upper *= -1;}} else {lower = 1;}}Frac operator+(const Frac &other) {lint L = lower * other.lower;lint U = upper*other.lower + lower*other.upper;return Frac(U, L);}Frac operator-(const Frac &other) {lint L = lower * other.lower;lint U = upper*other.lower - lower*other.upper;upper = U;lower = L;return Frac(U, L);}bool operator<=(const Frac &other) {return upper*other.lower <= lower*other.upper;}Frac operator*(const Frac &other) {lint L = lower * other.lower;lint U = upper * other.upper;return Frac(U, L);}Frac operator/(const Frac &other) {assert(other.upper != 0);lint L = lower * other.upper;lint U = upper * other.lower;return Frac(U, L);}};bool operator<(const Frac &left, const Frac &right) {return left.upper*right.lower < left.lower*right.upper;}lint extGCD(lint a, lint b, lint &x, lint &y) {if (b == 0) {x = 1;y = 0;return a;}lint d = extGCD(b, a%b, y, x);y -= a/b * x;return d;}struct edge{int to;};using graph = vector<vector<edge>>;int main(){int A, B, a, b;cin >> A >> B >> a >> b;rep(x, 10000000) {if(x%A == a && x%B == b) {cout << x << endl;return 0;}}}