結果

問題 No.2558 中国剰余定理
ユーザー deuteridayodeuteridayo
提出日時 2023-11-23 13:53:31
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 33 ms / 2,000 ms
コード長 5,026 bytes
コンパイル時間 4,787 ms
コンパイル使用メモリ 265,304 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-26 08:03:05
合計ジャッジ時間 5,391 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 9 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 33 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 9 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 5 ms
5,376 KB
testcase_11 AC 6 ms
5,376 KB
testcase_12 AC 3 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 3 ms
5,376 KB
testcase_16 AC 9 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 11 ms
5,376 KB
testcase_19 AC 14 ms
5,376 KB
testcase_20 AC 4 ms
5,376 KB
testcase_21 AC 7 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 10 ms
5,376 KB
testcase_25 AC 11 ms
5,376 KB
testcase_26 AC 3 ms
5,376 KB
testcase_27 AC 3 ms
5,376 KB
testcase_28 AC 8 ms
5,376 KB
testcase_29 AC 2 ms
5,376 KB
testcase_30 AC 4 ms
5,376 KB
testcase_31 AC 3 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using namespace atcoder;
using lint = long long;
using ulint = unsigned long long;
using llint = __int128_t;
#define endl '\n'
int const INF = 1<<30;
lint const INF64 = 1LL<<61;
lint const mod107 = 1e9+7;
using mint107 = modint1000000007;
long const mod = 998244353;
using mint = modint998244353;
lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}}
lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}}
lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;}
lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);}
lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;}
lint chmin(vector<lint>&v){lint ans = INF64;for(lint i:v){ans = min(ans, i);}return ans;}
lint chmax(vector<lint>&v){lint ans = -INF64;for(lint i:v){ans = max(ans, i);}return ans;}
double dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));}
string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c +
    ans;}}return ans;}
string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;}
vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j]
    <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}}
lint Kai[20000001]; bool firstCallnCr = true;
lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr =
    false;} if(n<0)return 0;
if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p
    ;}tmp *= tmp;tmp %= p;}return ans;}
#define rep(i, n) for(int i = 0; i < n; i++)
#define repp(i, x, y) for(int i = x; i < y; i++)
#define vec vector
#define pb push_back
#define se second
#define fi first
#define all(x) x.begin(),x.end()
#define rall(x) x.rbegin(),x.rend()
unsigned long Rand() {
static unsigned long x=123456789, y=362436069, z=521288629, w=88675123;
unsigned long t=(x^(x<<11));
x=y; y=z; z=w;
return ( w=(w^(w>>19))^(t^(t>>8)) );
}
struct Point {
lint x, y;
int quad;
Point(lint X, lint Y) {
x = X;
y = Y;
quad = getQuadrant();
}
int getQuadrant() {
if(x >= 0) {
if(y >= 0) return 1;
else return 4;
} else {
if(y >= 0) return 2;
else return 3;
}
}
};
bool operator<(const Point &left, const Point &right) {
if(left.quad == right.quad) {
return left.y * right.x < left.x * right.y;
} else {
return left.quad < right.quad;
}
}
struct Frac {
lint upper, lower;
Frac() {
Frac(0,1);
}
Frac(lint u, lint l) {
assert(l != 0);
if(u <= 0 && l < 0) {
upper = -u;
lower = -l;
} else {
upper = u;
lower = l;
}
reduction();
}
Frac(lint u) {
upper = u;
lower = 1;
}
void reduction() {
if(upper != 0) {
lint g = gcd(abs(upper), abs(lower));
upper /= g;
lower /= g;
if(lower < 0) {
lower *= -1;
upper *= -1;
}
} else {
lower = 1;
}
}
Frac operator+(const Frac &other) {
lint L = lower * other.lower;
lint U = upper*other.lower + lower*other.upper;
return Frac(U, L);
}
Frac operator-(const Frac &other) {
lint L = lower * other.lower;
lint U = upper*other.lower - lower*other.upper;
upper = U;
lower = L;
return Frac(U, L);
}
bool operator<=(const Frac &other) {
return upper*other.lower <= lower*other.upper;
}
Frac operator*(const Frac &other) {
lint L = lower * other.lower;
lint U = upper * other.upper;
return Frac(U, L);
}
Frac operator/(const Frac &other) {
assert(other.upper != 0);
lint L = lower * other.upper;
lint U = upper * other.lower;
return Frac(U, L);
}
};
bool operator<(const Frac &left, const Frac &right) {
return left.upper*right.lower < left.lower*right.upper;
}
lint extGCD(lint a, lint b, lint &x, lint &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
lint d = extGCD(b, a%b, y, x);
y -= a/b * x;
return d;
}
struct edge{
int to;
};
using graph = vector<vector<edge>>;
int main(){
int A, B, a, b;
cin >> A >> B >> a >> b;
rep(x, 10000000) {
if(x%A == a && x%B == b) {
cout << x << endl;
return 0;
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0