結果

問題 No.2262 Fractions
ユーザー maspymaspy
提出日時 2023-11-24 15:05:41
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 18,853 bytes
コンパイル時間 5,550 ms
コンパイル使用メモリ 316,328 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-26 08:36:57
合計ジャッジ時間 6,376 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 AC 2 ms
5,376 KB
testcase_38 AC 2 ms
5,376 KB
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
testcase_45 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 1 "/home/maspy/compro/library/nt/array_on_floor.hpp"
// N=10 だと dat = {dp[1], dp[2], dp[3], dp[5], dp[10]} みたいになる
// hashmap より数倍高速
template <typename T>
struct Array_On_Floor {
  u64 N;
  u32 n, sq;
  vc<T> dat;
  Array_On_Floor() {}
  Array_On_Floor(u64 N, T default_value = T{}) : N(N) {
    assert(N <= u64(1) << 50);
    sq = sqrtl(N);
    n = (u64(sq) * sq + sq <= N ? sq : sq - 1);
    dat.resize(n + sq, default_value);
  }

  u32 size() { return dat.size(); }

  T& operator[](u64 d) {
    int i = get_index(d);
    return dat[i];
  }

  inline u32 get_index(u64 d) {
    assert(d > 0);
    if (d <= n) return d - 1;
    return dat.size() - u32(double(N) / d);
  }

  // dat[i] に対応する floor
  u64 get_floor(u32 i) { return (i < n ? 1 + i : double(N) / (n + sq - i)); }

  template <typename F>
  void enumerate_all(F f) {
    FOR(i, len(dat)) { f(get_floor(i), dat[i]); }
  }
};
#line 2 "/home/maspy/compro/library/nt/primetable.hpp"

template <typename T = int>
vc<T> primetable(int LIM) {
  ++LIM;
  const int S = 32768;
  static int done = 2;
  static vc<T> primes = {2}, sieve(S + 1);

  if (done < LIM) {
    done = LIM;

    primes = {2}, sieve.assign(S + 1, 0);
    const int R = LIM / 2;
    primes.reserve(int(LIM / log(LIM) * 1.1));
    vc<pair<int, int>> cp;
    for (int i = 3; i <= S; i += 2) {
      if (!sieve[i]) {
        cp.eb(i, i * i / 2);
        for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;
      }
    }
    for (int L = 1; L <= R; L += S) {
      array<bool, S> block{};
      for (auto& [p, idx]: cp)
        for (int i = idx; i < S + L; idx = (i += p)) block[i - L] = 1;
      FOR(i, min(S, R - L)) if (!block[i]) primes.eb((L + i) * 2 + 1);
    }
  }
  int k = LB(primes, LIM + 1);
  return {primes.begin(), primes.begin() + k};
}
#line 3 "/home/maspy/compro/library/nt/zeta.hpp"

template <typename T>
void divisor_zeta(vc<T>& A) {
  assert(A[0] == 0);
  int N = len(A) - 1;
  auto P = primetable(N);
  for (auto&& p: P) { FOR3(x, 1, N / p + 1) A[p * x] += A[x]; }
}

template <typename T>
void divisor_mobius(vc<T>& A) {
  assert(A[0] == 0);
  int N = len(A) - 1;
  auto P = primetable(N);
  for (auto&& p: P) { FOR3_R(x, 1, N / p + 1) A[p * x] -= A[x]; }
}

template <typename T>
void multiplier_zeta(vc<T>& A) {
  assert(A[0] == 0);
  int N = len(A) - 1;
  auto P = primetable(N);
  for (auto&& p: P) { FOR3_R(x, 1, N / p + 1) A[x] += A[p * x]; }
}

template <typename T>
void multiplier_mobius(vc<T>& A) {
  assert(A[0] == 0);
  int N = len(A) - 1;
  auto P = primetable(N);
  for (auto&& p: P) { FOR3(x, 1, N / p + 1) A[x] -= A[p * x]; }
}
#line 2 "/home/maspy/compro/library/nt/mobius_table.hpp"

template<typename T>
vc<T> mobius_table(int N){
  vc<T> mu(N + 1);
  mu[1] = T(1);
  divisor_mobius(mu);
  return mu;
}
#line 1 "/home/maspy/compro/library/enumerate/floor_range.hpp"
// 商が q の区間 [l,r) を q について昇順
template <typename F>
void floor_range(u64 N, F f) {
  assert(N <= (u64(1) << 50));
  u64 sq = sqrtl(N);
  u32 n = (sq * sq + sq <= N ? sq : sq - 1);
  u64 prev = N + 1;
  for (u32 q = 1; q <= n; ++q) {
    u64 x = double(N) / (q + 1) + 1;
    f(q, x, prev), prev = x;
  }
  for (u32 l = sq; l >= 1; --l) { f(u64(double(N) / l), l, l + 1); }
}
#line 4 "/home/maspy/compro/library/nt/mertens.hpp"

template <typename T>
struct Mertens {
  Array_On_Floor<T> sum;
  Mertens() {}
  Mertens(u64 N, u64 K = -1) { build(N, K); }
  void build(u64 N, u64 K = -1) {
    sum = Array_On_Floor<T>(N);
    if (K == u64(-1)) { K = pow(N, 0.67); }
    vc<T> A = mobius_table<T>(K);
    FOR(k, 1, K) A[k + 1] += A[k];
    FOR(i, len(sum)) {
      u64 n = sum.get_floor(i);
      if (n <= K) {
        sum.dat[i] = A[n];
        continue;
      }
      T ans = 1;
      floor_range(n, [&](u64 q, u64 l, u64 r) -> void {
        if (q == n) return;
        ans -= sum[q] * T(r - l);
      });
      sum.dat[i] = ans;
    }
  }
  T operator[](u64 n) { return sum[n]; }
};
#line 2 "/home/maspy/compro/library/mod/floor_sum_of_linear.hpp"

// sum_{x in [L,R)} floor(ax + b, mod)
// I は範囲内で ax+b がオーバーフローしない程度
template <typename O = i128, typename I = long long>
O floor_sum_of_linear(I L, I R, I a, I b, I mod) {
  assert(L <= R);
  O res = 0;
  b += L * a;
  I N = R - L;

  if (b < 0) {
    I k = ceil(-b, mod);
    b += k * mod;
    res -= O(N) * O(k);
  }

  while (N) {
    I q;
    tie(q, a) = divmod(a, mod);
    res += (N & 1 ? O(N) * O((N - 1) / 2) * O(q) : O(N / 2) * O(N - 1) * O(q));
    if (b >= mod) {
      tie(q, b) = divmod(b, mod);
      res += O(N) * q;
    }
    tie(N, b) = divmod(a * N + b, mod);
    tie(a, mod) = mp(mod, a);
  }
  return res;
}
#line 6 "main.cpp"

// 最大分母 N を指定する
// 既約分数を数えたり k 番目を求めたりする
struct Range_Rational_Count {
  u32 N;
  u64 total;
  Mertens<int> M;
  Range_Rational_Count(u32 N) : N(N), M(N) { total = count(1, 1); }

  // [0, a/b)
  u64 count(u32 a, u32 b) {
    assert(a <= b);
    if (a == 0) return 0;
    // [0,a/b]
    u64 ans = 1;
    floor_range(N, [&](u32 q, u32 l, u32 r) -> void {
      ans += u64(M[q]) * floor_sum_of_linear<u64, u64>(l, r, a, 0, b);
    });
    // a/b
    if (b <= N) --ans;
    return ans;
  }

  // [0,1) の中で k 番目
  pair<u32, u32> kth(u64 k) {
    assert(k < total);
    u32 int_part = k / total;
    k %= total;
    map<pair<u32, u32>, u64> MP;
    auto query = [&](u32 a, u32 b) -> u64 {
      pair<u32, u32> k = {a, b};
      if (MP.count(k)) return MP[k];
      return MP[k] = count(a, b);
    };
    // k 個以下なものの max
    u32 a = 0, b = 1, c = 1, d = 1;
    while (b + d <= N) {
      // 右に進む
      u32 l = 0, r = 1;
      while (b + r * d <= N && query(a + r * c, b + r * d) <= k) {
        l = r, r = 2 * r;
      }
      while (l + 1 < r) {
        u32 m = l + (r - l) / 2;
        (query(a + m * c, b + m * d) <= k ? l : r) = m;
      }
      a += l * c, b += l * d;
      // 左に進む
      l = 0, r = 1;
      while (r * b + d <= N && query(r * a + c, r * b + d) > k) {
        l = r, r = 2 * r;
      }
      while (l + 1 < r) {
        u32 m = l + (r - l) / 2;
        (query(m * a + c, m * b + d) > k ? l : r) = m;
      }
      c += l * a, d += l * b;
    }
    return {int_part * b + a, b};
  }
};

void solve() {
  u64 N, K;
  read(N, K);

  auto out = [&](u32 a, u32 b) -> void {
    string s = to_string(a) + "/" + to_string(b);
    print(s);
  };

  Range_Rational_Count X(N);
  u64 t = X.total;
  if (K < t) {
    auto [a, b] = X.kth(K);
    out(a, b);
  }
  elif (K == t) { out(1, 1); }
  elif (K < 2 * t) {
    auto [a, b] = X.kth(2 * t - K);
    out(b, a);
  }
  else {
    print(-1);
  }
}

signed main() {
  solve();
  return 0;
}
0