結果

問題 No.2552 Not Coprime, Not Divisor
ユーザー StanMarsh
提出日時 2023-11-25 15:26:30
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 359 ms / 2,000 ms
コード長 7,435 bytes
コンパイル時間 498 ms
コンパイル使用メモリ 81,944 KB
実行使用メモリ 209,568 KB
最終ジャッジ日時 2024-09-26 10:51:53
合計ジャッジ時間 7,495 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #

from random import getrandbits, randrange
from string import ascii_lowercase, ascii_uppercase
import sys
from math import ceil, floor, sqrt, pi, factorial, gcd, log, log10, log2, inf, cos, sin
from copy import deepcopy, copy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import (
    accumulate,
    product,
    combinations,
    combinations_with_replacement,
    permutations,
)
from bisect import bisect, bisect_left, bisect_right
from functools import lru_cache, reduce
from decimal import Decimal, getcontext
from typing import List, Tuple, Optional


inf = float("inf")


def ceil_div(a, b):
    return (a + b - 1) // b


def isqrt(num):
    res = int(sqrt(num))
    while res * res > num:
        res -= 1
    while (res + 1) * (res + 1) <= num:
        res += 1
    return res


def int1(s):
    return int(s) - 1


from types import GeneratorType


def bootstrap(f, stack=[]):
    def wrapped(*args, **kwargs):
        if stack:
            return f(*args, **kwargs)
        else:
            to = f(*args, **kwargs)
            while True:
                if type(to) is GeneratorType:
                    stack.append(to)
                    to = next(to)
                else:
                    stack.pop()
                    if not stack:
                        break
                    to = stack[-1].send(to)
            return to

    return wrapped


import sys
import os

input = lambda: sys.stdin.readline().rstrip("\r\n")

print = lambda *args, end="\n", sep=" ": sys.stdout.write(
    sep.join(map(str, args)) + end
)


def II():
    return int(input())


def MII(base=0):
    return map(lambda s: int(s) - base, input().split())


def LII(base=0):
    return list(MII(base))


def NA():
    n = II()
    a = LII()
    return n, a


def read_graph(n, m, base=0, directed=False, return_edges=False):

    g = [[] for _ in range(n)]
    edges = []
    for _ in range(m):
        a, b = MII(base)
        if return_edges:
            edges.append((a, b))
        g[a].append(b)
        if not directed:
            g[b].append(a)
    if return_edges:
        return g, edges
    return g


def read_graph_with_weight(n, m, base=0, directed=False, return_edges=False):

    g = [[] for _ in range(n)]
    edges = []
    for _ in range(m):
        a, b, w = MII()
        a, b = a - base, b - base
        if return_edges:
            edges.append((a, b, w))
        g[a].append((b, w))
        if not directed:
            g[b].append((a, w))
    if return_edges:
        return g, edges
    return g


def iterate_tokens():
    for line in sys.stdin:
        for word in line.split():
            yield word


tokens = None


def NI():
    global tokens
    if tokens is None:
        tokens = iterate_tokens()
    return int(next(tokens))


def LNI(n):
    return [NI() for _ in range(n)]


def yes(res):
    print("Yes" if res else "No")


def YES(res):
    print("YES" if res else "NO")


def pairwise(a):
    n = len(a)
    for i in range(n - 1):
        yield a[i], a[i + 1]


def factorial(n):
    return reduce(lambda x, y: x * y, range(1, n + 1))


def cmin(dp, i, x):
    if x < dp[i]:
        dp[i] = x


def cmax(dp, i, x):
    if x > dp[i]:
        dp[i] = x


def alp_a_to_i(s):
    return ord(s) - ord("a")


def alp_A_to_i(s):
    return ord(s) - ord("A")


def alp_i_to_a(i):
    return chr(ord("a") + i)


def alp_i_to_A(i):
    return chr(ord("A") + i)


d4 = [(1, 0), (0, 1), (-1, 0), (0, -1)]
d8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]


def ranges(n, m):
    return ((i, j) for i in range(n) for j in range(m))


def valid(i, j, n, m):
    return 0 <= i < n and 0 <= j < m


def ninj(i, j, n, m):
    return [(i + di, j + dj) for di, dj in d4 if valid(i + di, j + dj, n, m)]


def gen(x, *args):
    if len(args) == 1:
        return [x] * args[0]
    if len(args) == 2:
        return [[x] * args[1] for _ in [0] * args[0]]
    if len(args) == 3:
        return [[[x] * args[2] for _ in [0] * args[1]] for _ in [0] * args[0]]
    if len(args) == 4:
        return [
            [[[x] * args[3] for _ in [0] * args[2]] for _ in [0] * args[1]]
            for _ in [0] * args[0]
        ]


list2d = lambda a, b, v: [[v] * b for _ in range(a)]
list3d = lambda a, b, c, v: [[[v] * c for _ in range(b)] for _ in range(a)]


class Debug:
    def __init__(self, debug=False):
        self.debug = debug
        cur_path = os.path.dirname(os.path.abspath(__file__))
        self.local = os.path.exists(cur_path + "/.cph")

    def get_ic(self):
        if self.debug and self.local:
            from icecream import ic

            return ic
        else:
            return lambda *args, **kwargs: ...


class PrimeTable:
    def __init__(self, n: int) -> None:
        self.n = n
        self.primes = []
        self.isprime = [True] * (n + 1)
        self.isprime[0] = self.isprime[1] = False
        self.max_div = list(range(n + 1))
        self.max_div[1] = 1

        self.phi = list(range(n + 1))

        for i in range(2, n + 1):
            if self.max_div[i] == i:
                self.primes.append(i)
                for j in range(i, n + 1, i):
                    if j != i:
                        self.isprime[j] = False
                    self.max_div[j] = i
                    self.phi[j] = self.phi[j] // i * (i - 1)
        self.pres = [0]
        for v in self.isprime:
            if v:
                self.pres.append(self.pres[-1] + 1)
            else:
                self.pres.append(self.pres[-1])

    def count_primes(self, l, r):

        return self.pres[r + 1] - self.pres[l]

    def is_prime(self, x: int):
        if x < 2:
            return False
        if x <= self.n:
            return self.max_div[x] == x
        for p in self.primes:
            if p * p > x:
                break
            if x % p == 0:
                return False
        return True

    def prime_factorization(self, x: int):
        if x > self.n:
            for p in self.primes:
                if p * p > x:
                    break
                if x <= self.n:
                    break
                if x % p == 0:
                    cnt = 0
                    while x % p == 0:
                        cnt += 1
                        x //= p
                    yield p, cnt
        while 1 < x and x <= self.n:
            p, cnt = self.max_div[x], 0
            while x % p == 0:
                cnt += 1
                x //= p
            yield p, cnt
        if x >= self.n and x > 1:
            yield x, 1

    def get_factors(self, x: int):
        factors = [1]
        for p, b in self.prime_factorization(x):
            n = len(factors)
            for j in range(1, b + 1):
                for d in factors[:n]:
                    factors.append(d * (p**j))
        return factors


class PrefixSum:
    def __init__(self, a):
        self.n = len(a)
        self.sum = [0] * (self.n + 1)
        self.sum[1] = a[0]
        for i in range(2, self.n + 1):
            self.sum[i] = self.sum[i - 1] + a[i - 1]

    def get_sum(self, l, r):

        return self.sum[r + 1] - self.sum[l]

    def __repr__(self):
        return str(self.sum)


ic = Debug(1).get_ic()
n = II()

pt = PrimeTable(n + 1)
t = [max(0, i - 1) for i in pt.phi]
pre = PrefixSum(t)


res = 0
for i in range(2, n):
    m = n // i
    res += pre.get_sum(0, m)

print(res)
0