結果
| 問題 |
No.367 ナイトの転身
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2016-05-20 18:00:30 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 380 ms / 2,000 ms |
| コード長 | 3,222 bytes |
| コンパイル時間 | 957 ms |
| コンパイル使用メモリ | 96,460 KB |
| 実行使用メモリ | 48,768 KB |
| 最終ジャッジ日時 | 2024-10-06 16:24:36 |
| 合計ジャッジ時間 | 3,039 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 27 |
ソースコード
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
#define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++)
using namespace std;
typedef long long int ll;
typedef vector<int> VI;
typedef pair<int, int> PI;
const double EPS=1e-9;
const int inf = 0x1ffffff;
/**
* Dijkstra's algorithm.
* First, call add_edge() to add edges.
* Second, call solve() to calculate the length of the shortest path from source to each vertex.
* Header requirement: algorithm, queue, vector
* Verified by AtCoder ARC026-C (http://arc026.contest.atcoder.jp/submissions/604231)
*/
template<class Len = int>
class Dijkstra {
private:
int n;
std::vector<std::vector<std::pair<int, Len> > > edges;
public:
/**
* n: the number of vertices
*/
Dijkstra(int n) : n(n), edges(n) {}
/*
* from: the source of edge to add
* to: the target of edge to add
* cost: the cost of edge to add
*/
void add_edge(int from, int to, Len cost) {
edges[from].push_back(std::pair<int, Len>(to, cost));
}
/*
* This function returns an array consisting of the distances from vertex source.
*/
std::vector<Len> solve(int source) {
typedef std::pair<Len, int> pi;
std::vector<Len> d(n, inf);
std::priority_queue<pi, std::vector<pi>, std::greater<pi> > que;
que.push(pi(0, source));
while (!que.empty()) {
pi p = que.top(); que.pop();
int idx = p.second;
if (d[idx] <= p.first) {
continue;
}
d[idx] = p.first;
for(int j = 0; j < edges[idx].size(); ++j) {
que.push(pi(p.first + edges[idx][j].second, edges[idx][j].first));
}
}
return d;
}
};
string s[500];
int main(void){
int h, w;
cin >> h >> w;
REP(i, 0, h) {
cin >> s[i];
}
Dijkstra<int> dijk(2 * h * w);
int knight[8][2]= {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1,2}, {2,-1}, {2,1}};
int bishop[4][2] = {{-1,-1}, {-1,1}, {1,-1}, {1,1}};
REP(i, 0, h) {
REP(j, 0, w) {
REP(q, 0, 8) {
int nx = i + knight[q][0];
int ny = j + knight[q][1];
if (0 > nx || nx >= h) continue;
if (0 > ny || ny >= w) continue;
int np = w * nx + ny;
if (s[nx][ny] == 'R') {
np += w * h; // another world
}
dijk.add_edge(w * i + j, np, 1);
}
REP(q, 0, 4) {
int nx = i + bishop[q][0];
int ny = j + bishop[q][1];
if (0 > nx || nx >= h) continue;
if (0 > ny || ny >= w) continue;
int np = w * nx + ny + w * h;
if (s[nx][ny] == 'R') {
np -= w * h; // another world
}
dijk.add_edge(w * i + j + w * h, np, 1);
}
}
}
int sx = 0, sy = 0;
int gx = 0, gy = 0;
REP(i, 0, h) {
REP(j, 0, w) {
if (s[i][j] == 'S') {
sx = i, sy = j;
}
if (s[i][j] == 'G') {
gx = i, gy = j;
}
}
}
vector<int> result = dijk.solve(w * sx + sy);
int g = w * gx + gy;
int dist = min(result[g], result[g + w * h]);
cout << (dist == inf ? -1 : dist) << endl;
}