結果
問題 | No.367 ナイトの転身 |
ユーザー | koba-e964 |
提出日時 | 2016-05-20 18:00:30 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 380 ms / 2,000 ms |
コード長 | 3,222 bytes |
コンパイル時間 | 957 ms |
コンパイル使用メモリ | 96,460 KB |
実行使用メモリ | 48,768 KB |
最終ジャッジ日時 | 2024-10-06 16:24:36 |
合計ジャッジ時間 | 3,039 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 1 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 1 ms
5,248 KB |
testcase_10 | AC | 287 ms
48,732 KB |
testcase_11 | AC | 380 ms
48,768 KB |
testcase_12 | AC | 162 ms
20,992 KB |
testcase_13 | AC | 146 ms
20,992 KB |
testcase_14 | AC | 143 ms
20,096 KB |
testcase_15 | AC | 5 ms
5,248 KB |
testcase_16 | AC | 128 ms
18,176 KB |
testcase_17 | AC | 14 ms
5,248 KB |
testcase_18 | AC | 21 ms
5,888 KB |
testcase_19 | AC | 37 ms
7,936 KB |
testcase_20 | AC | 17 ms
5,504 KB |
testcase_21 | AC | 39 ms
7,808 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 3 ms
5,248 KB |
testcase_24 | AC | 4 ms
5,248 KB |
testcase_25 | AC | 3 ms
5,248 KB |
testcase_26 | AC | 1 ms
5,248 KB |
ソースコード
#include <algorithm> #include <bitset> #include <cassert> #include <cctype> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <functional> #include <iomanip> #include <iostream> #include <list> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <stack> #include <string> #include <utility> #include <vector> #define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++) using namespace std; typedef long long int ll; typedef vector<int> VI; typedef pair<int, int> PI; const double EPS=1e-9; const int inf = 0x1ffffff; /** * Dijkstra's algorithm. * First, call add_edge() to add edges. * Second, call solve() to calculate the length of the shortest path from source to each vertex. * Header requirement: algorithm, queue, vector * Verified by AtCoder ARC026-C (http://arc026.contest.atcoder.jp/submissions/604231) */ template<class Len = int> class Dijkstra { private: int n; std::vector<std::vector<std::pair<int, Len> > > edges; public: /** * n: the number of vertices */ Dijkstra(int n) : n(n), edges(n) {} /* * from: the source of edge to add * to: the target of edge to add * cost: the cost of edge to add */ void add_edge(int from, int to, Len cost) { edges[from].push_back(std::pair<int, Len>(to, cost)); } /* * This function returns an array consisting of the distances from vertex source. */ std::vector<Len> solve(int source) { typedef std::pair<Len, int> pi; std::vector<Len> d(n, inf); std::priority_queue<pi, std::vector<pi>, std::greater<pi> > que; que.push(pi(0, source)); while (!que.empty()) { pi p = que.top(); que.pop(); int idx = p.second; if (d[idx] <= p.first) { continue; } d[idx] = p.first; for(int j = 0; j < edges[idx].size(); ++j) { que.push(pi(p.first + edges[idx][j].second, edges[idx][j].first)); } } return d; } }; string s[500]; int main(void){ int h, w; cin >> h >> w; REP(i, 0, h) { cin >> s[i]; } Dijkstra<int> dijk(2 * h * w); int knight[8][2]= {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1,2}, {2,-1}, {2,1}}; int bishop[4][2] = {{-1,-1}, {-1,1}, {1,-1}, {1,1}}; REP(i, 0, h) { REP(j, 0, w) { REP(q, 0, 8) { int nx = i + knight[q][0]; int ny = j + knight[q][1]; if (0 > nx || nx >= h) continue; if (0 > ny || ny >= w) continue; int np = w * nx + ny; if (s[nx][ny] == 'R') { np += w * h; // another world } dijk.add_edge(w * i + j, np, 1); } REP(q, 0, 4) { int nx = i + bishop[q][0]; int ny = j + bishop[q][1]; if (0 > nx || nx >= h) continue; if (0 > ny || ny >= w) continue; int np = w * nx + ny + w * h; if (s[nx][ny] == 'R') { np -= w * h; // another world } dijk.add_edge(w * i + j + w * h, np, 1); } } } int sx = 0, sy = 0; int gx = 0, gy = 0; REP(i, 0, h) { REP(j, 0, w) { if (s[i][j] == 'S') { sx = i, sy = j; } if (s[i][j] == 'G') { gx = i, gy = j; } } } vector<int> result = dijk.solve(w * sx + sy); int g = w * gx + gy; int dist = min(result[g], result[g + w * h]); cout << (dist == inf ? -1 : dist) << endl; }