結果

問題 No.1775 Love Triangle 2
ユーザー maspymaspy
提出日時 2023-11-27 17:11:26
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 75 ms / 8,000 ms
コード長 22,096 bytes
コンパイル時間 5,030 ms
コンパイル使用メモリ 336,044 KB
実行使用メモリ 8,604 KB
最終ジャッジ日時 2024-09-26 12:30:16
合計ジャッジ時間 7,969 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
7,680 KB
testcase_01 AC 4 ms
7,552 KB
testcase_02 AC 3 ms
7,588 KB
testcase_03 AC 4 ms
7,680 KB
testcase_04 AC 69 ms
8,604 KB
testcase_05 AC 74 ms
8,520 KB
testcase_06 AC 75 ms
8,516 KB
testcase_07 AC 26 ms
8,060 KB
testcase_08 AC 73 ms
8,476 KB
testcase_09 AC 4 ms
7,676 KB
testcase_10 AC 5 ms
7,644 KB
testcase_11 AC 4 ms
7,800 KB
testcase_12 AC 5 ms
7,696 KB
testcase_13 AC 4 ms
7,680 KB
testcase_14 AC 4 ms
7,688 KB
testcase_15 AC 4 ms
7,808 KB
testcase_16 AC 5 ms
8,064 KB
testcase_17 AC 5 ms
8,064 KB
testcase_18 AC 6 ms
8,192 KB
testcase_19 AC 4 ms
7,760 KB
testcase_20 AC 4 ms
7,680 KB
testcase_21 AC 3 ms
7,680 KB
testcase_22 AC 4 ms
7,624 KB
testcase_23 AC 4 ms
7,784 KB
testcase_24 AC 4 ms
7,808 KB
testcase_25 AC 4 ms
7,808 KB
testcase_26 AC 5 ms
7,752 KB
testcase_27 AC 3 ms
7,808 KB
testcase_28 AC 4 ms
7,680 KB
testcase_29 AC 7 ms
8,576 KB
testcase_30 AC 9 ms
8,320 KB
testcase_31 AC 12 ms
8,096 KB
testcase_32 AC 13 ms
7,924 KB
testcase_33 AC 12 ms
7,936 KB
testcase_34 AC 11 ms
7,912 KB
testcase_35 AC 10 ms
7,808 KB
testcase_36 AC 8 ms
7,680 KB
testcase_37 AC 5 ms
7,680 KB
testcase_38 AC 4 ms
7,680 KB
testcase_39 AC 7 ms
8,448 KB
testcase_40 AC 10 ms
8,320 KB
testcase_41 AC 11 ms
8,040 KB
testcase_42 AC 10 ms
8,060 KB
testcase_43 AC 9 ms
7,936 KB
testcase_44 AC 7 ms
8,064 KB
testcase_45 AC 11 ms
7,824 KB
testcase_46 AC 7 ms
8,040 KB
testcase_47 AC 4 ms
7,936 KB
testcase_48 AC 5 ms
7,792 KB
testcase_49 AC 8 ms
8,404 KB
testcase_50 AC 9 ms
8,448 KB
testcase_51 AC 12 ms
8,216 KB
testcase_52 AC 13 ms
8,060 KB
testcase_53 AC 10 ms
7,968 KB
testcase_54 AC 10 ms
7,936 KB
testcase_55 AC 9 ms
7,936 KB
testcase_56 AC 7 ms
7,808 KB
testcase_57 AC 6 ms
7,636 KB
testcase_58 AC 5 ms
7,724 KB
testcase_59 AC 9 ms
8,412 KB
testcase_60 AC 10 ms
8,320 KB
testcase_61 AC 10 ms
7,936 KB
testcase_62 AC 7 ms
7,936 KB
testcase_63 AC 7 ms
7,912 KB
testcase_64 AC 6 ms
7,936 KB
testcase_65 AC 4 ms
7,808 KB
testcase_66 AC 4 ms
7,680 KB
testcase_67 AC 5 ms
7,680 KB
testcase_68 AC 4 ms
7,680 KB
testcase_69 AC 5 ms
7,808 KB
testcase_70 AC 5 ms
7,680 KB
testcase_71 AC 5 ms
7,672 KB
testcase_72 AC 5 ms
7,632 KB
testcase_73 AC 5 ms
7,764 KB
testcase_74 AC 5 ms
7,808 KB
testcase_75 AC 5 ms
7,908 KB
testcase_76 AC 5 ms
7,616 KB
testcase_77 AC 4 ms
7,808 KB
testcase_78 AC 5 ms
7,676 KB
testcase_79 AC 4 ms
7,628 KB
testcase_80 AC 4 ms
7,652 KB
testcase_81 AC 4 ms
7,680 KB
testcase_82 AC 5 ms
7,688 KB
testcase_83 AC 4 ms
7,808 KB
testcase_84 AC 5 ms
7,680 KB
testcase_85 AC 5 ms
7,648 KB
testcase_86 AC 4 ms
7,680 KB
testcase_87 AC 5 ms
7,680 KB
testcase_88 AC 5 ms
7,644 KB
testcase_89 AC 4 ms
7,748 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1776"
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 4 "main.cpp"

#line 2 "/home/maspy/compro/library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    if (len(used_e) != M) used_e.assign(M, 0);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 2 "/home/maspy/compro/library/random/base.hpp"

u64 RNG_64() {
  static uint64_t x_
      = uint64_t(chrono::duration_cast<chrono::nanoseconds>(
                     chrono::high_resolution_clock::now().time_since_epoch())
                     .count())
        * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 1 "/home/maspy/compro/library/nt/GF2.hpp"
#include <emmintrin.h>
#include <smmintrin.h>
#include <wmmintrin.h>

__attribute__((target("pclmul"))) inline __m128i myclmul(const __m128i &a,
                                                         const __m128i &b) {
  return _mm_clmulepi64_si128(a, b, 0);
}

// 2^n 元体
template <int K>
struct GF2 {
  // https://oeis.org/A344141
  // irreducible poly x^K + ...
  static constexpr int POLY[65]
      = {0,  0, 3,  3,   3,  5,   3,  3,  27,  3,  9,  5,   9, 27, 33, 3,   43,
         9,  9, 39, 9,   5,  3,   33, 27, 9,   27, 39, 3,   5, 3,  9,  141, 75,
         27, 5, 53, 63,  99, 17,  57, 9,  39,  89, 33, 27,  3, 33, 45, 113, 29,
         75, 9, 71, 125, 71, 149, 17, 99, 123, 3,  39, 105, 3, 27};

  static constexpr u64 mask() { return u64(-1) >> (64 - K); }

  __attribute__((target("sse4.2"))) static u64 mul(u64 a, u64 b) {
    static bool prepared = 0;
    static u64 MEMO[8][65536];
    if (!prepared) {
      prepared = 1;
      vc<u64> tmp(128);
      tmp[0] = 1;
      FOR(i, 127) {
        tmp[i + 1] = tmp[i] << 1;
        if (tmp[i] >> (K - 1) & 1) {
          tmp[i + 1] ^= POLY[K];
          tmp[i + 1] &= mask();
        }
      }
      FOR(k, 8) {
        MEMO[k][0] = 0;
        FOR(i, 16) {
          FOR(s, 1 << i) { MEMO[k][s | 1 << i] = MEMO[k][s] ^ tmp[16 * k + i]; }
        }
      }
    }
    const __m128i a_ = _mm_set_epi64x(0, a);
    const __m128i b_ = _mm_set_epi64x(0, b);
    const __m128i c_ = myclmul(a_, b_);
    u64 lo = _mm_extract_epi64(c_, 0);
    u64 hi = _mm_extract_epi64(c_, 1);
    u64 x = 0;
    x ^= MEMO[0][lo & 65535];
    x ^= MEMO[1][(lo >> 16) & 65535];
    x ^= MEMO[2][(lo >> 32) & 65535];
    x ^= MEMO[3][(lo >> 48) & 65535];
    x ^= MEMO[4][hi & 65535];
    x ^= MEMO[5][(hi >> 16) & 65535];
    x ^= MEMO[6][(hi >> 32) & 65535];
    x ^= MEMO[7][(hi >> 48) & 65535];
    return x;
  }

  u64 val;
  constexpr GF2(const u64 val = 0) noexcept : val(val & mask()) {}
  bool operator<(const GF2 &other) const {
    return val < other.val;
  } // To use std::map
  GF2 &operator+=(const GF2 &p) {
    val ^= p.val;
    return *this;
  }
  GF2 &operator-=(const GF2 &p) {
    val ^= p.val;
    return *this;
  }
  GF2 &operator*=(const GF2 &p) {
    val = mul(val, p.val);
    return *this;
  }

  GF2 &operator/=(const GF2 &p) {
    *this *= p.inverse();
    return *this;
  }
  GF2 operator-() const { return GF2(-val); }
  GF2 operator+(const GF2 &p) const { return GF2(*this) += p; }
  GF2 operator-(const GF2 &p) const { return GF2(*this) -= p; }
  GF2 operator*(const GF2 &p) const { return GF2(*this) *= p; }
  GF2 operator/(const GF2 &p) const { return GF2(*this) /= p; }
  bool operator==(const GF2 &p) const { return val == p.val; }
  bool operator!=(const GF2 &p) const { return val != p.val; }
  GF2 inverse() const { return pow((u64(1) << K) - 2); }
  GF2 pow(u64 n) const {
    GF2 ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
};

#ifdef FASTIO
template <int K>
void rd(GF2<K> &x) {
  fastio::rd(x.val);
  x &= GF2<K>::mask;
}
template <int K>
void wt(GF2<K> x) {
  fastio::wt(x.val);
}
#endif
#line 8 "main.cpp"

// (s,t) path であって need をすべて通るものの最小長さを求める.
// s=t でもよい. 最初の 1 歩目も求める.
// {length, first v}. なければ {-1,-1}.
// O(2^K(N+M)L), L = shortest path length
template <typename GT>
pair<int, int> find_path_through_specified(GT& G, int s, int t, vc<int> need) {
  static_assert(!GT::is_directed);
  int N = G.N;
  assert(0 <= s && s < N && 0 <= t && t < N);
  using F = GF2<31>;
  // frm, to, wt
  vc<tuple<int, int, F>> edges;
  vc<int> S, T;
  for (auto& e: G.edges) {
    int a = e.frm, b = e.to;
    if ((a == s && b == t) || (a == t && b == s)) return {1, t};
    if (a == s || b == s) { S.eb(a ^ b ^ s); }
    if (a == t || b == t) { T.eb(a ^ b ^ t); }
    if (a != s && a != t && b != s && b != t) {
      F x = RNG_64();
      edges.eb(a, b, x), edges.eb(b, a, x);
    }
  }
  int K = len(need);
  vc<int> get(N);
  FOR(k, K) get[need[k]] = 1 << k;
  int M = len(edges);

  vv(F, dp_e, 1 << K, M);
  vv(F, dp_v, 1 << K, N);
  for (auto& v: T) dp_v[get[v]][v] = RNG_64();
  FOR(L, 1, N) {
    for (auto& v: S) {
      if (dp_v.back()[v] != F(0)) return {1 + L, v};
    }
    vv(F, newdp_e, 1 << K, M);
    vv(F, newdp_v, 1 << K, N);
    FOR(s, 1 << K) {
      FOR(m, M) {
        auto [a, b, c] = edges[m];
        int t = s | get[b];
        if (get[b] && s == t) continue;
        F x = (dp_v[s][a] + dp_e[s][m ^ 1]) * c;
        newdp_e[t][m] += x, newdp_v[t][b] += x;
      }
    }
    swap(dp_v, newdp_v), swap(dp_e, newdp_e);
  }
  return {-1, -1};
}

void solve() {
  LL(N, M);
  INT(X, Y, Z);
  --X, --Y, --Z;
  vv(bool, can, N, N, 1);
  FOR(M) {
    LL(a, b);
    --a, --b;
    can[a][b] = can[b][a] = 0;
  }

  Graph<int, 0> G(N);
  FOR(a, N) FOR(b, a) if (can[a][b]) G.add(a, b);
  G.build();
  vc<int> need = {Y, Z};
  auto [L, nxt] = find_path_through_specified(G, X, X, need);
  print(L);
}

signed main() {
  solve();
  return 0;
}
0