結果
問題 | No.1776 Love Triangle 2 (Hard) |
ユーザー | maspy |
提出日時 | 2023-11-27 17:20:25 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 875 ms / 10,000 ms |
コード長 | 22,637 bytes |
コンパイル時間 | 5,467 ms |
コンパイル使用メモリ | 335,100 KB |
実行使用メモリ | 9,856 KB |
最終ジャッジ日時 | 2024-09-26 12:31:08 |
合計ジャッジ時間 | 25,519 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
7,552 KB |
testcase_01 | AC | 7 ms
7,552 KB |
testcase_02 | AC | 6 ms
7,552 KB |
testcase_03 | AC | 7 ms
7,552 KB |
testcase_04 | AC | 82 ms
8,320 KB |
testcase_05 | AC | 91 ms
8,576 KB |
testcase_06 | AC | 90 ms
8,320 KB |
testcase_07 | AC | 32 ms
7,936 KB |
testcase_08 | AC | 86 ms
8,192 KB |
testcase_09 | AC | 9 ms
7,808 KB |
testcase_10 | AC | 8 ms
7,680 KB |
testcase_11 | AC | 8 ms
7,808 KB |
testcase_12 | AC | 9 ms
7,680 KB |
testcase_13 | AC | 7 ms
7,680 KB |
testcase_14 | AC | 8 ms
7,808 KB |
testcase_15 | AC | 9 ms
7,808 KB |
testcase_16 | AC | 8 ms
7,808 KB |
testcase_17 | AC | 8 ms
8,016 KB |
testcase_18 | AC | 11 ms
8,092 KB |
testcase_19 | AC | 8 ms
7,680 KB |
testcase_20 | AC | 9 ms
7,808 KB |
testcase_21 | AC | 8 ms
7,680 KB |
testcase_22 | AC | 8 ms
7,680 KB |
testcase_23 | AC | 8 ms
7,680 KB |
testcase_24 | AC | 8 ms
7,680 KB |
testcase_25 | AC | 7 ms
7,680 KB |
testcase_26 | AC | 8 ms
7,808 KB |
testcase_27 | AC | 9 ms
7,680 KB |
testcase_28 | AC | 8 ms
7,808 KB |
testcase_29 | AC | 14 ms
8,436 KB |
testcase_30 | AC | 32 ms
8,192 KB |
testcase_31 | AC | 87 ms
7,996 KB |
testcase_32 | AC | 138 ms
8,048 KB |
testcase_33 | AC | 168 ms
8,064 KB |
testcase_34 | AC | 161 ms
8,064 KB |
testcase_35 | AC | 158 ms
7,936 KB |
testcase_36 | AC | 122 ms
7,808 KB |
testcase_37 | AC | 74 ms
7,680 KB |
testcase_38 | AC | 32 ms
7,808 KB |
testcase_39 | AC | 21 ms
8,424 KB |
testcase_40 | AC | 56 ms
8,192 KB |
testcase_41 | AC | 82 ms
8,092 KB |
testcase_42 | AC | 82 ms
8,044 KB |
testcase_43 | AC | 64 ms
7,936 KB |
testcase_44 | AC | 25 ms
8,064 KB |
testcase_45 | AC | 150 ms
7,936 KB |
testcase_46 | AC | 34 ms
7,936 KB |
testcase_47 | AC | 8 ms
7,808 KB |
testcase_48 | AC | 16 ms
7,680 KB |
testcase_49 | AC | 12 ms
8,564 KB |
testcase_50 | AC | 31 ms
8,192 KB |
testcase_51 | AC | 86 ms
8,120 KB |
testcase_52 | AC | 139 ms
8,168 KB |
testcase_53 | AC | 149 ms
7,936 KB |
testcase_54 | AC | 150 ms
7,936 KB |
testcase_55 | AC | 144 ms
7,936 KB |
testcase_56 | AC | 127 ms
7,936 KB |
testcase_57 | AC | 77 ms
7,936 KB |
testcase_58 | AC | 50 ms
7,936 KB |
testcase_59 | AC | 24 ms
8,296 KB |
testcase_60 | AC | 39 ms
8,064 KB |
testcase_61 | AC | 51 ms
8,088 KB |
testcase_62 | AC | 25 ms
8,052 KB |
testcase_63 | AC | 22 ms
7,936 KB |
testcase_64 | AC | 34 ms
7,808 KB |
testcase_65 | AC | 9 ms
7,936 KB |
testcase_66 | AC | 13 ms
7,936 KB |
testcase_67 | AC | 14 ms
7,808 KB |
testcase_68 | AC | 7 ms
7,680 KB |
testcase_69 | AC | 282 ms
9,684 KB |
testcase_70 | AC | 302 ms
9,568 KB |
testcase_71 | AC | 300 ms
9,564 KB |
testcase_72 | AC | 107 ms
8,192 KB |
testcase_73 | AC | 290 ms
9,528 KB |
testcase_74 | AC | 13 ms
7,680 KB |
testcase_75 | AC | 10 ms
7,808 KB |
testcase_76 | AC | 9 ms
7,808 KB |
testcase_77 | AC | 9 ms
7,808 KB |
testcase_78 | AC | 11 ms
7,808 KB |
testcase_79 | AC | 11 ms
7,808 KB |
testcase_80 | AC | 11 ms
8,064 KB |
testcase_81 | AC | 12 ms
7,948 KB |
testcase_82 | AC | 13 ms
8,340 KB |
testcase_83 | AC | 20 ms
9,208 KB |
testcase_84 | AC | 12 ms
7,680 KB |
testcase_85 | AC | 11 ms
7,808 KB |
testcase_86 | AC | 9 ms
7,680 KB |
testcase_87 | AC | 8 ms
7,936 KB |
testcase_88 | AC | 9 ms
7,808 KB |
testcase_89 | AC | 10 ms
7,936 KB |
testcase_90 | AC | 10 ms
7,936 KB |
testcase_91 | AC | 9 ms
7,936 KB |
testcase_92 | AC | 10 ms
7,808 KB |
testcase_93 | AC | 10 ms
7,808 KB |
testcase_94 | AC | 24 ms
9,744 KB |
testcase_95 | AC | 105 ms
9,472 KB |
testcase_96 | AC | 318 ms
8,992 KB |
testcase_97 | AC | 618 ms
8,448 KB |
testcase_98 | AC | 856 ms
8,196 KB |
testcase_99 | AC | 875 ms
8,200 KB |
testcase_100 | AC | 665 ms
7,936 KB |
testcase_101 | AC | 385 ms
8,064 KB |
testcase_102 | AC | 202 ms
7,680 KB |
testcase_103 | AC | 103 ms
7,808 KB |
testcase_104 | AC | 37 ms
9,600 KB |
testcase_105 | AC | 114 ms
9,072 KB |
testcase_106 | AC | 231 ms
8,832 KB |
testcase_107 | AC | 52 ms
8,340 KB |
testcase_108 | AC | 214 ms
8,072 KB |
testcase_109 | AC | 64 ms
8,192 KB |
testcase_110 | AC | 45 ms
8,036 KB |
testcase_111 | AC | 43 ms
7,936 KB |
testcase_112 | AC | 19 ms
7,808 KB |
testcase_113 | AC | 20 ms
7,808 KB |
testcase_114 | AC | 25 ms
9,740 KB |
testcase_115 | AC | 102 ms
9,468 KB |
testcase_116 | AC | 310 ms
8,840 KB |
testcase_117 | AC | 580 ms
8,580 KB |
testcase_118 | AC | 835 ms
8,020 KB |
testcase_119 | AC | 833 ms
8,148 KB |
testcase_120 | AC | 641 ms
7,936 KB |
testcase_121 | AC | 354 ms
7,808 KB |
testcase_122 | AC | 224 ms
7,680 KB |
testcase_123 | AC | 159 ms
7,808 KB |
testcase_124 | AC | 54 ms
9,856 KB |
testcase_125 | AC | 51 ms
8,960 KB |
testcase_126 | AC | 81 ms
8,832 KB |
testcase_127 | AC | 50 ms
8,348 KB |
testcase_128 | AC | 38 ms
8,148 KB |
testcase_129 | AC | 32 ms
8,024 KB |
testcase_130 | AC | 36 ms
8,056 KB |
testcase_131 | AC | 26 ms
8,064 KB |
testcase_132 | AC | 22 ms
7,936 KB |
testcase_133 | AC | 13 ms
7,808 KB |
testcase_134 | AC | 11 ms
7,680 KB |
testcase_135 | AC | 27 ms
7,680 KB |
testcase_136 | AC | 28 ms
7,808 KB |
testcase_137 | AC | 33 ms
7,808 KB |
testcase_138 | AC | 38 ms
7,680 KB |
testcase_139 | AC | 43 ms
7,936 KB |
testcase_140 | AC | 37 ms
7,808 KB |
testcase_141 | AC | 30 ms
7,808 KB |
testcase_142 | AC | 36 ms
7,936 KB |
testcase_143 | AC | 35 ms
7,936 KB |
testcase_144 | AC | 11 ms
7,680 KB |
testcase_145 | AC | 11 ms
7,680 KB |
testcase_146 | AC | 21 ms
7,808 KB |
testcase_147 | AC | 12 ms
7,680 KB |
testcase_148 | AC | 24 ms
7,680 KB |
testcase_149 | AC | 18 ms
7,808 KB |
testcase_150 | AC | 26 ms
7,808 KB |
testcase_151 | AC | 14 ms
7,808 KB |
testcase_152 | AC | 20 ms
7,808 KB |
testcase_153 | AC | 30 ms
7,680 KB |
testcase_154 | AC | 21 ms
7,808 KB |
testcase_155 | AC | 86 ms
8,064 KB |
testcase_156 | AC | 89 ms
7,808 KB |
testcase_157 | AC | 73 ms
7,936 KB |
testcase_158 | AC | 62 ms
7,680 KB |
testcase_159 | AC | 88 ms
8,064 KB |
testcase_160 | AC | 43 ms
7,680 KB |
testcase_161 | AC | 57 ms
7,680 KB |
testcase_162 | AC | 112 ms
7,936 KB |
testcase_163 | AC | 108 ms
7,936 KB |
testcase_164 | AC | 120 ms
8,064 KB |
testcase_165 | AC | 65 ms
7,808 KB |
testcase_166 | AC | 34 ms
7,808 KB |
testcase_167 | AC | 38 ms
7,808 KB |
testcase_168 | AC | 28 ms
7,680 KB |
testcase_169 | AC | 45 ms
7,552 KB |
testcase_170 | AC | 59 ms
7,680 KB |
testcase_171 | AC | 93 ms
7,680 KB |
testcase_172 | AC | 49 ms
7,808 KB |
testcase_173 | AC | 119 ms
7,680 KB |
testcase_174 | AC | 52 ms
7,680 KB |
testcase_175 | AC | 82 ms
7,680 KB |
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1776" #line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'000'000'000; template <> constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 4 "main.cpp" #line 2 "/home/maspy/compro/library/graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); if (len(used_e) != M) used_e.assign(M, 0); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "/home/maspy/compro/library/random/base.hpp" u64 RNG_64() { static uint64_t x_ = uint64_t(chrono::duration_cast<chrono::nanoseconds>( chrono::high_resolution_clock::now().time_since_epoch()) .count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 1 "/home/maspy/compro/library/nt/GF2.hpp" #include <emmintrin.h> #include <smmintrin.h> #include <wmmintrin.h> __attribute__((target("pclmul"))) inline __m128i myclmul(const __m128i &a, const __m128i &b) { return _mm_clmulepi64_si128(a, b, 0); } // 2^n 元体 template <int K> struct GF2 { // https://oeis.org/A344141 // irreducible poly x^K + ... static constexpr int POLY[65] = {0, 0, 3, 3, 3, 5, 3, 3, 27, 3, 9, 5, 9, 27, 33, 3, 43, 9, 9, 39, 9, 5, 3, 33, 27, 9, 27, 39, 3, 5, 3, 9, 141, 75, 27, 5, 53, 63, 99, 17, 57, 9, 39, 89, 33, 27, 3, 33, 45, 113, 29, 75, 9, 71, 125, 71, 149, 17, 99, 123, 3, 39, 105, 3, 27}; static constexpr u64 mask() { return u64(-1) >> (64 - K); } __attribute__((target("sse4.2"))) static u64 mul(u64 a, u64 b) { static bool prepared = 0; static u64 MEMO[8][65536]; if (!prepared) { prepared = 1; vc<u64> tmp(128); tmp[0] = 1; FOR(i, 127) { tmp[i + 1] = tmp[i] << 1; if (tmp[i] >> (K - 1) & 1) { tmp[i + 1] ^= POLY[K]; tmp[i + 1] &= mask(); } } FOR(k, 8) { MEMO[k][0] = 0; FOR(i, 16) { FOR(s, 1 << i) { MEMO[k][s | 1 << i] = MEMO[k][s] ^ tmp[16 * k + i]; } } } } const __m128i a_ = _mm_set_epi64x(0, a); const __m128i b_ = _mm_set_epi64x(0, b); const __m128i c_ = myclmul(a_, b_); u64 lo = _mm_extract_epi64(c_, 0); u64 hi = _mm_extract_epi64(c_, 1); u64 x = 0; x ^= MEMO[0][lo & 65535]; x ^= MEMO[1][(lo >> 16) & 65535]; x ^= MEMO[2][(lo >> 32) & 65535]; x ^= MEMO[3][(lo >> 48) & 65535]; x ^= MEMO[4][hi & 65535]; x ^= MEMO[5][(hi >> 16) & 65535]; x ^= MEMO[6][(hi >> 32) & 65535]; x ^= MEMO[7][(hi >> 48) & 65535]; return x; } u64 val; constexpr GF2(const u64 val = 0) noexcept : val(val & mask()) {} bool operator<(const GF2 &other) const { return val < other.val; } // To use std::map GF2 &operator+=(const GF2 &p) { val ^= p.val; return *this; } GF2 &operator-=(const GF2 &p) { val ^= p.val; return *this; } GF2 &operator*=(const GF2 &p) { val = mul(val, p.val); return *this; } GF2 &operator/=(const GF2 &p) { *this *= p.inverse(); return *this; } GF2 operator-() const { return GF2(-val); } GF2 operator+(const GF2 &p) const { return GF2(*this) += p; } GF2 operator-(const GF2 &p) const { return GF2(*this) -= p; } GF2 operator*(const GF2 &p) const { return GF2(*this) *= p; } GF2 operator/(const GF2 &p) const { return GF2(*this) /= p; } bool operator==(const GF2 &p) const { return val == p.val; } bool operator!=(const GF2 &p) const { return val != p.val; } GF2 inverse() const { return pow((u64(1) << K) - 2); } GF2 pow(u64 n) const { GF2 ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } }; #ifdef FASTIO template <int K> void rd(GF2<K> &x) { fastio::rd(x.val); x &= GF2<K>::mask; } template <int K> void wt(GF2<K> x) { fastio::wt(x.val); } #endif #line 4 "/home/maspy/compro/library/graph/find_path_through_specified.hpp" // (s,t) path であって need をすべて通るものの最小長さを求める. // s=t でもよい. 最初の 1 歩目も求める. // {length, first v}. なければ {-1,-1}. // O(2^K(N+M)L), L = shortest path length template <typename GT> pair<int, int> find_path_through_specified(GT& G, int s, int t, vc<int> need) { static_assert(!GT::is_directed); int N = G.N; assert(0 <= s && s < N && 0 <= t && t < N); using F = GF2<64>; // frm, to, wt vc<tuple<int, int, F>> edges; vc<int> S, T; for (auto& e: G.edges) { int a = e.frm, b = e.to; if ((a == s && b == t) || (a == t && b == s)) { if (need.empty()) return {1, t}; continue; } if (a == s || b == s) { S.eb(a ^ b ^ s); } if (a == t || b == t) { T.eb(a ^ b ^ t); } if (a != s && a != t && b != s && b != t) { F x = RNG_64(); edges.eb(a, b, x), edges.eb(b, a, x); } } int K = len(need); vc<int> get(N); FOR(k, K) get[need[k]] = 1 << k; int M = len(edges); vv(F, dp_e, 1 << K, M); vv(F, dp_v, 1 << K, N); for (auto& v: T) dp_v[get[v]][v] = RNG_64(); FOR(L, 1, N) { for (auto& v: S) { if (dp_v.back()[v] != F(0)) return {1 + L, v}; } vv(F, newdp_e, 1 << K, M); vv(F, newdp_v, 1 << K, N); FOR(s, 1 << K) { FOR(m, M) { auto [a, b, c] = edges[m]; int t = s | get[b]; if (get[b] && s == t) continue; F x = (dp_v[s][a] + dp_e[s][m ^ 1]) * c; newdp_e[t][m] += x, newdp_v[t][b] += x; } } swap(dp_v, newdp_v), swap(dp_e, newdp_e); } return {-1, -1}; } #line 6 "main.cpp" void solve() { LL(N, M); INT(X, Y, Z); --X, --Y, --Z; vv(bool, can, N, N, 1); FOR(M) { LL(a, b); --a, --b; can[a][b] = can[b][a] = 0; } vc<int> path = {X}; while (1) { vc<int> done(N); FOR(i, 1, len(path) - 1) { done[path[i]] = 1; } Graph<int, 0> G(N); FOR(b, N) FOR(a, b) { if (!can[a][b] || done[a] || done[b]) continue; G.add(a, b); } int s = path.back(), t = X; vc<int> need; for (auto& y: {Y, Z}) { if (y == s || y == t || done[y]) continue; need.eb(y); } auto [L, nxt] = find_path_through_specified(G, s, t, need); if (L == -1) return print(-1); path.eb(nxt); if (nxt == X) break; } for (auto& x: path) ++x; print(len(path) - 1); print(path); } signed main() { solve(); return 0; }