結果

問題 No.1784 Not a star yet...
ユーザー maspymaspy
提出日時 2023-11-27 19:34:53
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 454 ms / 2,000 ms
コード長 23,289 bytes
コンパイル時間 5,434 ms
コンパイル使用メモリ 324,740 KB
実行使用メモリ 12,416 KB
最終ジャッジ日時 2024-09-26 12:34:32
合計ジャッジ時間 17,956 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 4 ms
5,376 KB
testcase_15 AC 7 ms
5,376 KB
testcase_16 AC 186 ms
7,424 KB
testcase_17 AC 25 ms
5,376 KB
testcase_18 AC 390 ms
11,136 KB
testcase_19 AC 127 ms
6,272 KB
testcase_20 AC 26 ms
5,376 KB
testcase_21 AC 3 ms
5,376 KB
testcase_22 AC 5 ms
5,376 KB
testcase_23 AC 3 ms
5,376 KB
testcase_24 AC 219 ms
8,448 KB
testcase_25 AC 355 ms
10,496 KB
testcase_26 AC 67 ms
5,376 KB
testcase_27 AC 218 ms
8,192 KB
testcase_28 AC 13 ms
5,376 KB
testcase_29 AC 6 ms
5,376 KB
testcase_30 AC 264 ms
8,960 KB
testcase_31 AC 296 ms
9,472 KB
testcase_32 AC 76 ms
5,376 KB
testcase_33 AC 2 ms
5,376 KB
testcase_34 AC 10 ms
5,376 KB
testcase_35 AC 2 ms
5,376 KB
testcase_36 AC 2 ms
5,376 KB
testcase_37 AC 9 ms
5,376 KB
testcase_38 AC 8 ms
5,376 KB
testcase_39 AC 6 ms
5,376 KB
testcase_40 AC 7 ms
5,376 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 2 ms
5,376 KB
testcase_43 AC 437 ms
12,288 KB
testcase_44 AC 444 ms
12,288 KB
testcase_45 AC 440 ms
12,288 KB
testcase_46 AC 433 ms
12,288 KB
testcase_47 AC 424 ms
12,288 KB
testcase_48 AC 429 ms
12,288 KB
testcase_49 AC 433 ms
12,288 KB
testcase_50 AC 441 ms
12,416 KB
testcase_51 AC 439 ms
12,288 KB
testcase_52 AC 446 ms
12,416 KB
testcase_53 AC 442 ms
12,288 KB
testcase_54 AC 434 ms
12,288 KB
testcase_55 AC 435 ms
12,288 KB
testcase_56 AC 437 ms
12,288 KB
testcase_57 AC 442 ms
12,288 KB
testcase_58 AC 448 ms
12,288 KB
testcase_59 AC 454 ms
12,416 KB
testcase_60 AC 451 ms
12,288 KB
testcase_61 AC 447 ms
12,288 KB
testcase_62 AC 438 ms
12,288 KB
testcase_63 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1045430273) return {20, 363};
    if (mod == 1051721729) return {20, 330};
    if (mod == 1053818881) return {20, 2789};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 1 "/home/maspy/compro/library/linalg/solve_linear.hpp"
/*
0 行目に解のひとつ。
1~行目に解空間の基底が行ベクトルとして入る。
解なし = empty
*/
template <typename T>
vc<vc<T>> solve_linear(vc<vc<T>> a, vc<T> b, int n = -1, int m = -1) {
  if (n == -1) {
    n = len(a);
    assert(n > 0);
    m = len(a[0]);
  }
  assert(n == len(a) && n == len(b));
  int rk = 0;
  FOR(j, m) {
    if (rk == n) break;
    FOR(i, rk, n) if (a[i][j] != 0) {
      swap(a[rk], a[i]);
      swap(b[rk], b[i]);
      break;
    }
    if (a[rk][j] == 0) continue;
    T c = T(1) / a[rk][j];
    for (auto&& x: a[rk]) x *= c;
    b[rk] *= c;
    FOR(i, n) if (i != rk) {
      T c = a[i][j];
      if (c == T(0)) continue;
      b[i] -= b[rk] * c;
      FOR(k, j, m) { a[i][k] -= a[rk][k] * c; }
    }
    ++rk;
  }
  FOR(i, rk, n) if (b[i] != 0) return {};
  vc<vc<T>> res(1, vc<T>(m));
  vc<int> pivot(m, -1);
  int p = 0;
  FOR(i, rk) {
    while (a[i][p] == 0) ++p;
    res[0][p] = b[i];
    pivot[p] = i;
  }
  FOR(j, m) if (pivot[j] == -1) {
    vc<T> x(m);
    x[j] = -1;
    FOR(k, j) if (pivot[k] != -1) x[k] = a[pivot[k]][j];
    res.eb(x);
  }
  return res;
}
#line 6 "main.cpp"

using mint = modint998;

// 局所的に
// f(i,j) = sum p f(ii,jj) + 1/N となるように f(i,j) を決める

void solve() {
  INT(N);
  vc<array<int, 3>> deg(N, {0, 0, 0});
  int N1 = 0, N2 = 0;
  FOR(N - 1) {
    INT(a, b, c);
    --a, --b;
    deg[a][c]++, deg[b][c]++;
    if (c == 1) ++N1;
    if (c == 2) ++N2;
  }
  FOR(v, N) if (deg[v][1] + deg[v][2] == N - 1) return print(0);

  vv(mint, stay, N1 + 1, N2 + 1);
  vv(mint, U, N1 + 1, N2 + 1);
  vv(mint, D, N1 + 1, N2 + 1);
  vv(mint, L, N1 + 1, N2 + 1);
  vv(mint, R, N1 + 1, N2 + 1);

  mint p = mint(N1 + 2 * N2).inverse();
  mint q = mint(1) / mint(N * (N - 1) / 2 - (N - 2));

  FOR(a, N1 + 1) FOR(b, N2 + 1) {
    if (a == N1 && b == N2) continue;
    // 長さ 1 の辺が近傍から消える場合
    mint p1 = p * mint(a);
    mint q_me = q * (N - 1 - (a + b - 1));
    mint q_other = mint(1) - q_me;
    stay[a][b] += p1 * q_me;
    U[a][b] += p1 * q_other;
    // 長さ 2 の辺が近傍から消える場合
    mint p2 = p * mint(b + b);
    stay[a][b] += p2 * q_me;
    L[a][b] += p2 * q_other;
    // 長さ 1 の辺が他のどこかから消える場合
    p1 = p * (N1 - a);
    q_me = q * (N - 1 - (a + b));
    q_other = mint(1) - q_me;
    D[a][b] += p1 * q_me;
    stay[a][b] += p1 * q_other;
    // 長さ 2 の辺が他のどこかから消える場合
    p2 = p * mint(2 * (N2 - b));
    R[a][b] += p2 * q_me;
    stay[a][b] += p2 * q_other;
    assert(stay[a][b] + L[a][b] + R[a][b] + D[a][b] + U[a][b] == mint(1));
  }

  // 上 N1 行分の方程式を考える
  // 定数項
  vv(mint, C, N1 + 1, N2 + 1);
  FOR(i, N1) {
    FOR(j, N2 + 1) {
      mint lhs = C[i][j];
      mint rhs = 0;
      rhs += stay[i][j] * C[i][j];
      if (i > 0) rhs += U[i][j] * C[i - 1][j];
      if (j > 0) rhs += L[i][j] * C[i][j - 1];
      if (j + 1 <= N2) rhs += R[i][j] * C[i][j + 1];
      rhs += inv<mint>(N);
      C[i + 1][j] = (lhs - rhs) / D[i][j];
    }
  }

  // (0,k) 成分の寄与
  vvv(mint, dp, N2 + 1, N1 + 1, N2 + 1);
  FOR(k, N2 + 1) {
    auto& DP = dp[k];
    DP[0][k] = 1;
    FOR(i, N1) {
      FOR(j, N2 + 1) {
        mint lhs = DP[i][j];
        mint rhs = 0;
        rhs += stay[i][j] * DP[i][j];
        if (i > 0) rhs += U[i][j] * DP[i - 1][j];
        if (j > 0) rhs += L[i][j] * DP[i][j - 1];
        if (j + 1 <= N2) rhs += R[i][j] * DP[i][j + 1];
        DP[i + 1][j] = (lhs - rhs) / D[i][j];
      }
    }
  }

  // 最終行を使って, 第 0 行の満たすべき方程式を作る
  vv(mint, mat, 0, N2 + 1);
  vc<mint> rhs;
  FOR(j, N2) {
    vc<mint> A(N2 + 1);
    mint b = 0;
    int i = N1;
    FOR(k, N2 + 1) {
      A[k] += dp[k][i][j];
      A[k] -= stay[i][j] * dp[k][i][j];
      if (i > 0) { A[k] -= U[i][j] * dp[k][i - 1][j]; }
      if (j > 0) { A[k] -= L[i][j] * dp[k][i][j - 1]; }
      if (j + 1 <= N2) { A[k] -= R[i][j] * dp[k][i][j + 1]; }
    }
    b += inv<mint>(N);
    b -= C[i][j];
    b += stay[i][j] * C[i][j];
    if (i > 0) { b += U[i][j] * C[i - 1][j]; }
    if (j > 0) { b += L[i][j] * C[i][j - 1]; }
    if (j + 1 <= N2) { b += R[i][j] * C[i][j + 1]; }
    mat.eb(A), rhs.eb(b);
  }

  auto sol = solve_linear<mint>(mat, rhs, len(mat), N2 + 1);
  assert(!sol.empty());
  vc<mint> X = sol[0];

  C[0] = X;
  FOR(i, N1) {
    FOR(j, N2 + 1) {
      mint lhs = C[i][j];
      mint rhs = 0;
      rhs += stay[i][j] * C[i][j];
      if (i > 0) rhs += U[i][j] * C[i - 1][j];
      if (j > 0) rhs += L[i][j] * C[i][j - 1];
      if (j + 1 <= N2) rhs += R[i][j] * C[i][j + 1];
      rhs += inv<mint>(N);
      C[i + 1][j] = (lhs - rhs) / D[i][j];
    }
  }

  // check
  FOR(i, N1 + 1) FOR(j, N2 + 1) {
    if (i == N1 && j == N2) continue;
    mint lhs = C[i][j];
    mint rhs = inv<mint>(N);
    rhs += stay[i][j] * C[i][j];
    if (i > 0) rhs += U[i][j] * C[i - 1][j];
    if (j > 0) rhs += L[i][j] * C[i][j - 1];
    if (j + 1 <= N2) rhs += R[i][j] * C[i][j + 1];
    if (i + 1 <= N1) rhs += D[i][j] * C[i + 1][j];
    assert(lhs == rhs);
  }

  mint c = 0;
  // end
  if (N1 >= 1) c -= mint(N1) * C[1][0];
  if (N2 >= 1) c -= mint(N2) * C[0][1];
  c -= C[N1][N2];

  mint ANS = c;
  FOR(v, N) { ANS += C[deg[v][1]][deg[v][2]]; }
  print(ANS);
}

signed main() {
  int T = 1;
  // INT(T);
  FOR(T) solve();
  return 0;
}
0