結果
| 問題 |
No.2075 GCD Subsequence
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2023-11-29 17:34:12 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,054 bytes |
| コンパイル時間 | 292 ms |
| コンパイル使用メモリ | 82,308 KB |
| 実行使用メモリ | 120,320 KB |
| 最終ジャッジ日時 | 2024-09-26 13:32:58 |
| 合計ジャッジ時間 | 21,630 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 15 TLE * 1 -- * 12 |
ソースコード
import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
write=sys.stdout.write
#import pypyjit
#pypyjit.set_param('max_unroll_recursion=-1')
#sys.set_int_max_str_digits(10**9)
def Factorize(N):
assert N>=1
factors=defaultdict(int)
for p in range(2,N):
if p**2>N:
break
while N%p==0:
factors[p]+=1
N//=p
if N!=1:
factors[N]+=1
return factors
class Prime:
def __init__(self,N):
assert N<=10**8
self.smallest_prime_factor=[None]*(N+1)
for i in range(2,N+1,2):
self.smallest_prime_factor[i]=2
n=int(N**.5)+1
for p in range(3,n,2):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
for i in range(p**2,N+1,2*p):
if self.smallest_prime_factor[i]==None:
self.smallest_prime_factor[i]=p
for p in range(n,N+1):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]
def Factorize(self,N):
assert N>=1
factors=defaultdict(int)
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factors[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
else:
for p in self.primes:
while N%p==0:
N//=p
factors[p]+=1
if N<p*p:
if N!=1:
factors[N]+=1
break
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factors[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
break
else:
if N!=1:
factors[N]+=1
return factors
def Divisors(self,N):
assert N>0
divisors=[1]
for p,e in self.Factorize(N).items():
pow_p=[1]
for _ in range(e):
pow_p.append(pow_p[-1]*p)
divisors=[i*j for i in divisors for j in pow_p]
return divisors
def Is_Prime(self,N):
return N==self.smallest_prime_factor[N]
def Totient(self,N):
for p in self.Factorize(N).keys():
N*=p-1
N//=p
return N
def Mebius(self,N):
fact=self.Factorize(N)
for e in fact.values():
if e>=2:
return 0
else:
if len(fact)%2==0:
return 1
else:
return -1
N=int(readline())
A=list(map(int,readline().split()))
mod=998244353
for i in range(N):
a=1
for p in Factorize(A[i]):
a*=p
A[i]=a
max_A=max(A)
Pr=Prime(max_A)
ans=0
dp=[0]*(max_A+1)
for a in A:
cnt=1
P=list(Pr.Factorize(a).keys())
le=len(P)
for bit in range(1,1<<le):
p=1
for i in range(le):
if bit&1<<i:
p*=P[i]
if sum(1 for i in range(le) if bit&1<<i)%2:
cnt+=dp[p]
else:
cnt-=dp[p]
cnt%=mod
ans+=cnt
ans%=mod
for bit in range(1<<le):
p=1
for i in range(le):
if bit&1<<i:
p*=P[i]
dp[p]+=cnt
dp[p]%=mod
print(ans)
vwxyz