結果

問題 No.2075 GCD Subsequence
ユーザー vwxyzvwxyz
提出日時 2023-11-29 17:34:12
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 4,054 bytes
コンパイル時間 292 ms
コンパイル使用メモリ 82,308 KB
実行使用メモリ 120,320 KB
最終ジャッジ日時 2024-09-26 13:32:58
合計ジャッジ時間 21,630 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 134 ms
89,728 KB
testcase_01 AC 136 ms
89,472 KB
testcase_02 AC 138 ms
89,540 KB
testcase_03 AC 138 ms
89,472 KB
testcase_04 AC 137 ms
89,600 KB
testcase_05 AC 144 ms
89,344 KB
testcase_06 AC 144 ms
89,564 KB
testcase_07 AC 142 ms
89,440 KB
testcase_08 AC 1,261 ms
115,580 KB
testcase_09 AC 1,757 ms
120,320 KB
testcase_10 AC 1,211 ms
115,516 KB
testcase_11 AC 1,527 ms
115,644 KB
testcase_12 AC 1,373 ms
115,036 KB
testcase_13 AC 1,058 ms
115,348 KB
testcase_14 AC 1,679 ms
115,400 KB
testcase_15 AC 1,163 ms
114,712 KB
testcase_16 AC 1,182 ms
114,520 KB
testcase_17 AC 1,684 ms
120,192 KB
testcase_18 TLE -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
write=sys.stdout.write
#import pypyjit
#pypyjit.set_param('max_unroll_recursion=-1')
#sys.set_int_max_str_digits(10**9)

def Factorize(N):
    assert N>=1
    factors=defaultdict(int)
    for p in range(2,N):
        if p**2>N:
            break
        while N%p==0:
            factors[p]+=1
            N//=p
    if N!=1:
        factors[N]+=1
    return factors

class Prime:
    def __init__(self,N):
        assert N<=10**8
        self.smallest_prime_factor=[None]*(N+1)
        for i in range(2,N+1,2):
            self.smallest_prime_factor[i]=2
        n=int(N**.5)+1
        for p in range(3,n,2):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
                for i in range(p**2,N+1,2*p):
                    if self.smallest_prime_factor[i]==None:
                        self.smallest_prime_factor[i]=p
        for p in range(n,N+1):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
        self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]

    def Factorize(self,N):
        assert N>=1
        factors=defaultdict(int)
        if N<=len(self.smallest_prime_factor)-1:
            while N!=1:
                factors[self.smallest_prime_factor[N]]+=1
                N//=self.smallest_prime_factor[N]
        else:
            for p in self.primes:
                while N%p==0:
                    N//=p
                    factors[p]+=1
                if N<p*p:
                    if N!=1:
                        factors[N]+=1
                    break
                if N<=len(self.smallest_prime_factor)-1:
                    while N!=1:
                        factors[self.smallest_prime_factor[N]]+=1
                        N//=self.smallest_prime_factor[N]
                    break
            else:
                if N!=1:
                    factors[N]+=1
        return factors

    def Divisors(self,N):
        assert N>0
        divisors=[1]
        for p,e in self.Factorize(N).items():
            pow_p=[1]
            for _ in range(e):
                pow_p.append(pow_p[-1]*p)
            divisors=[i*j for i in divisors for j in pow_p]
        return divisors

    def Is_Prime(self,N):
        return N==self.smallest_prime_factor[N]

    def Totient(self,N):
        for p in self.Factorize(N).keys():
            N*=p-1
            N//=p
        return N

    def Mebius(self,N):
        fact=self.Factorize(N)
        for e in fact.values():
            if e>=2:
                return 0
        else:
            if len(fact)%2==0:
                return 1
            else:
                return -1

N=int(readline())
A=list(map(int,readline().split()))
mod=998244353
for i in range(N):
    a=1
    for p in Factorize(A[i]):
        a*=p
    A[i]=a
max_A=max(A)
Pr=Prime(max_A)
ans=0
dp=[0]*(max_A+1)
for a in A:
    cnt=1
    P=list(Pr.Factorize(a).keys())
    le=len(P)
    for bit in range(1,1<<le):
        p=1
        for i in range(le):
            if bit&1<<i:
                p*=P[i]
        if sum(1 for i in range(le) if bit&1<<i)%2:
            cnt+=dp[p]
        else:
            cnt-=dp[p]
    cnt%=mod
    ans+=cnt
    ans%=mod
    for bit in range(1<<le):
        p=1
        for i in range(le):
            if bit&1<<i:
                p*=P[i]
        dp[p]+=cnt
        dp[p]%=mod
print(ans)
0