結果
問題 | No.2075 GCD Subsequence |
ユーザー | vwxyz |
提出日時 | 2023-11-29 17:48:57 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,102 ms / 4,000 ms |
コード長 | 4,073 bytes |
コンパイル時間 | 310 ms |
コンパイル使用メモリ | 81,884 KB |
実行使用メモリ | 120,832 KB |
最終ジャッジ日時 | 2024-09-26 13:33:22 |
合計ジャッジ時間 | 22,322 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 28 |
ソースコード
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys import time from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines write=sys.stdout.write #import pypyjit #pypyjit.set_param('max_unroll_recursion=-1') #sys.set_int_max_str_digits(10**9) def Factorize(N): assert N>=1 factors=defaultdict(int) for p in range(2,N): if p**2>N: break while N%p==0: factors[p]+=1 N//=p if N!=1: factors[N]+=1 return factors class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factors=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factors[p]+=1 if N<p*p: if N!=1: factors[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factors[N]+=1 return factors def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): pow_p=[1] for _ in range(e): pow_p.append(pow_p[-1]*p) divisors=[i*j for i in divisors for j in pow_p] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 N=int(readline()) A=list(map(int,readline().split())) mod=998244353 for i in range(N): a=1 for p in Factorize(A[i]): a*=p A[i]=a max_A=max(A) Pr=Prime(max_A) ans=0 dp=[0]*(max_A+1) for a in A: cnt=1 P=list(Pr.Factorize(a).keys()) le=len(P) dp_p=[None]*(1<<le) dp_sgn=[None]*(1<<le) dp_p[0]=1 dp_sgn[0]=0 for bit in range(1,1<<le): i=(bit&-bit).bit_length()-1 dp_p[bit]=dp_p[bit^1<<i]*P[i] dp_sgn[bit]=dp_sgn[bit^1<<i]^1 if dp_sgn[bit]: cnt+=dp[dp_p[bit]] else: cnt-=dp[dp_p[bit]] cnt%=mod ans+=cnt ans%=mod for bit in range(1<<le): dp[dp_p[bit]]+=cnt dp[dp_p[bit]]%=mod print(ans)