結果

問題 No.937 Ultra Sword
ユーザー vwxyzvwxyz
提出日時 2023-11-29 19:27:30
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 2,503 bytes
コンパイル時間 258 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 132,608 KB
最終ジャッジ日時 2024-09-26 13:35:19
合計ジャッジ時間 23,281 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 162 ms
89,600 KB
testcase_01 WA -
testcase_02 AC 162 ms
89,856 KB
testcase_03 AC 165 ms
89,984 KB
testcase_04 AC 168 ms
90,112 KB
testcase_05 AC 521 ms
132,608 KB
testcase_06 AC 751 ms
122,496 KB
testcase_07 AC 755 ms
122,752 KB
testcase_08 AC 750 ms
119,040 KB
testcase_09 AC 755 ms
118,784 KB
testcase_10 AC 762 ms
125,056 KB
testcase_11 AC 243 ms
95,232 KB
testcase_12 AC 260 ms
105,984 KB
testcase_13 AC 258 ms
105,728 KB
testcase_14 AC 265 ms
107,520 KB
testcase_15 AC 258 ms
102,912 KB
testcase_16 AC 244 ms
94,720 KB
testcase_17 AC 244 ms
94,976 KB
testcase_18 AC 257 ms
104,576 KB
testcase_19 AC 254 ms
99,968 KB
testcase_20 AC 250 ms
98,432 KB
testcase_21 AC 766 ms
124,160 KB
testcase_22 AC 165 ms
89,984 KB
testcase_23 AC 162 ms
89,600 KB
testcase_24 AC 521 ms
126,720 KB
testcase_25 AC 525 ms
121,216 KB
testcase_26 AC 538 ms
119,280 KB
testcase_27 AC 536 ms
120,148 KB
testcase_28 AC 539 ms
120,716 KB
testcase_29 AC 508 ms
116,992 KB
testcase_30 AC 529 ms
117,760 KB
testcase_31 AC 541 ms
122,240 KB
testcase_32 AC 517 ms
116,608 KB
testcase_33 AC 535 ms
122,368 KB
testcase_34 AC 520 ms
115,328 KB
testcase_35 AC 509 ms
115,200 KB
testcase_36 AC 537 ms
120,960 KB
testcase_37 AC 515 ms
115,328 KB
testcase_38 AC 537 ms
120,176 KB
testcase_39 AC 544 ms
116,864 KB
testcase_40 AC 555 ms
120,672 KB
testcase_41 AC 519 ms
115,072 KB
testcase_42 AC 535 ms
117,248 KB
testcase_43 AC 519 ms
117,760 KB
testcase_44 AC 519 ms
115,712 KB
testcase_45 AC 516 ms
116,128 KB
testcase_46 AC 539 ms
116,864 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
write=sys.stdout.write
#import pypyjit
#pypyjit.set_param('max_unroll_recursion=-1')
#sys.set_int_max_str_digits(10**9)

def Hadamard(polynomial,n,mod=0,inverse=False):
    assert mod%2
    polynomial_=[x for x in polynomial]+[0]*((1<<n)-len(polynomial))
    for bit in range(n):
        for i in range(1<<n):
            ii=i^(1<<bit)
            if i>ii:
                continue
            polynomial_[i],polynomial_[ii]=polynomial_[i]+polynomial_[ii],polynomial_[i]-polynomial_[ii]
            if mod:
                polynomial_[i]%=mod
                polynomial_[ii]%=mod
    if inverse:
        if mod:
            inve_2=pow((mod+1)//2,n)
            for i in range(1<<n):
                polynomial_[i]*=inve_2
                polynomial_[i]%=mod
        else:
            pow_2=pow(2,n)
            for i in range(1<<n):
                polynomial_[i]/=pow_2
    return polynomial_

def XOR_Convolution(polynomial0,polynomial1,mod=0):
    n=(max(len(polynomial0),len(polynomial1))-1).bit_length()
    Hadamard_polynomial0=Hadamard(polynomial0,n,mod=mod)
    Hadamard_polynomial1=Hadamard(polynomial1,n,mod=mod)
    if mod:
        convolution=[x*y%mod for x,y in zip(Hadamard_polynomial0,Hadamard_polynomial1)]
    else:
        convolution=[x*y for x,y in zip(Hadamard_polynomial0,Hadamard_polynomial1)]
    convolution=Hadamard(convolution,n,mod=mod,inverse=True)
    return convolution

N=int(readline())
A=list(map(int,readline().split()))
max_A=max(A)
poly=[0]*(2*max_A+1)
poly[0]=1
for a in A:
    while a<=max_A*2:
        poly[a]+=1
        a*=2
poly=XOR_Convolution(poly,poly,mod=(1<<61)-1)
C=[0]*(max_A+1)
for a in A:
    C[a]+=1
sum_A=sum(A)
ans=sum_A
for i in range(1,max_A+1):
    if poly[i]==0:
        continue
    s=sum_A
    for j in range(i,max_A+1,i):
        s-=C[j]*(j-j//i)
    ans=min(ans,s)
print(ans)
0