結果

問題 No.957 植林
ユーザー mkawa2mkawa2
提出日時 2023-11-29 21:48:42
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 8,934 bytes
コンパイル時間 346 ms
コンパイル使用メモリ 81,700 KB
実行使用メモリ 100,160 KB
最終ジャッジ日時 2023-11-29 21:48:47
合計ジャッジ時間 4,690 ms
ジャッジサーバーID
(参考情報)
judge15 / judge12
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 63 ms
77,104 KB
testcase_01 AC 63 ms
70,300 KB
testcase_02 AC 62 ms
70,300 KB
testcase_03 TLE -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

# sys.setrecursionlimit(1000005)
# sys.set_int_max_str_digits(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()

dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
# inf = -1-(-1 << 31)
inf = -1-(-1 << 63)
# md = 10**9+7
md = 998244353

from typing import NamedTuple, Optional, List, cast

class MFGraph:
    class Edge(NamedTuple):
        src: int
        dst: int
        cap: int
        flow: int

    class _Edge:
        def __init__(self, dst: int, cap: int) -> None:
            self.dst = dst
            self.cap = cap
            self.rev: Optional[MFGraph._Edge] = None

    def __init__(self, n: int) -> None:
        self._n = n+2
        self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n+2)]
        self._edges: List[MFGraph._Edge] = []
        self._lower_sum = 0

    def add_edge(self, src: int, dst: int, cap: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MFGraph._Edge(dst, cap)
        re = MFGraph._Edge(src, 0)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    # cap's range [l,r]
    def add_edge_lr(self, src: int, dst: int, l: int, r: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= l <= r
        if r-l: self.add_edge(src, dst, r-l)
        self.add_edge(src, self._n-1, l)
        self.add_edge(self._n-2, dst, l)
        self._lower_sum += l

    def add_undir_edge(self, src: int, dst: int, cap: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MFGraph._Edge(dst, cap)
        re = MFGraph._Edge(src, cap)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def get_edge(self, i: int) -> Edge:
        assert 0 <= i < len(self._edges)
        e = self._edges[i]
        re = cast(MFGraph._Edge, e.rev)
        return MFGraph.Edge(
            re.dst,
            e.dst,
            e.cap+re.cap,
            re.cap
        )

    def edges(self) -> List[Edge]:
        return [self.get_edge(i) for i in range(len(self._edges))]

    def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:
        assert 0 <= i < len(self._edges)
        assert 0 <= new_flow <= new_cap
        e = self._edges[i]
        e.cap = new_cap-new_flow
        assert e.rev is not None
        e.rev.cap = new_flow

    def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit is None:
            flow_limit = cast(int, sum(e.cap for e in self._g[s]))

        current_edge = [0]*self._n
        level = [0]*self._n

        def fill(arr: List[int], value: int) -> None:
            for i in range(len(arr)):
                arr[i] = value

        def bfs() -> bool:
            fill(level, self._n)
            queue = []
            q_front = 0
            queue.append(s)
            level[s] = 0
            while q_front < len(queue):
                v = queue[q_front]
                q_front += 1
                next_level = level[v]+1
                for e in self._g[v]:
                    if e.cap == 0 or level[e.dst] <= next_level:
                        continue
                    level[e.dst] = next_level
                    if e.dst == t:
                        return True
                    queue.append(e.dst)
            return False

        def dfs(lim: int) -> int:
            stack = []
            edge_stack: List[MFGraph._Edge] = []
            stack.append(t)
            while stack:
                v = stack[-1]
                if v == s:
                    flow = min(lim, min(e.cap for e in edge_stack))
                    for e in edge_stack:
                        e.cap -= flow
                        assert e.rev is not None
                        e.rev.cap += flow
                    return flow
                next_level = level[v]-1
                while current_edge[v] < len(self._g[v]):
                    e = self._g[v][current_edge[v]]
                    re = cast(MFGraph._Edge, e.rev)
                    if level[e.dst] != next_level or re.cap == 0:
                        current_edge[v] += 1
                        continue
                    stack.append(e.dst)
                    edge_stack.append(re)
                    break
                else:
                    stack.pop()
                    if edge_stack:
                        edge_stack.pop()
                    level[v] = self._n
            return 0

        flow = 0
        while flow < flow_limit:
            if not bfs():
                break
            fill(current_edge, 0)
            while flow < flow_limit:
                f = dfs(flow_limit-flow)
                flow += f
                if f == 0:
                    break
        return flow

    def flow_lr(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit:
            flow_limit -= self._lower_sum
            if flow_limit < 0: return -1
        f = self.flow(self._n-2, self._n-1)*2
        f += self.flow(self._n-2, t)
        f += self.flow(s, self._n-1)
        if f < self._lower_sum*2: return -1
        f = self.flow(s, t, flow_limit)
        return f+self._lower_sum

    def min_cut(self, s: int) -> List[bool]:
        visited = [False]*self._n
        stack = [s]
        visited[s] = True
        while stack:
            v = stack.pop()
            for e in self._g[v]:
                if e.cap > 0 and not visited[e.dst]:
                    visited[e.dst] = True
                    stack.append(e.dst)
        return visited

from collections import deque

class Dinic:
    def __init__(self, n, s, t):
        self.n, self.s, self.t = n, s, t
        self.to = [[] for _ in range(n)]
        self.max_flow = -1

    def add_edge(self, u, v, cap):
        u_index_in_to_v = len(self.to[v])
        v_index_in_to_u = len(self.to[u])
        self.to[u].append([v, cap, u_index_in_to_v])
        self.to[v].append([u, 0, v_index_in_to_u])

    # 無向辺の追加
    def add_undir_edge(self, u, v, cap):
        u_index_in_to_v = len(self.to[v])
        v_index_in_to_u = len(self.to[u])
        self.to[u].append([v, cap, u_index_in_to_v])
        self.to[v].append([u, cap, v_index_in_to_u])

    def __set_level(self):
        s = self.s
        level = [-1] * self.n
        level[s] = 0
        q = deque()
        q.append([s, 0])
        while q:
            u, u_level = q.popleft()
            for v, cap, _ in self.to[u]:
                if cap == 0: continue
                if level[v] != -1: continue
                level[v] = u_level + 1
                if v == self.t:
                    self.level = level
                    return True
                q.append([v, u_level + 1])
        return False

    def __dfs(self, u=-1, flow_to_me=10 ** 16):
        if u == -1: u = self.s
        if u == self.t: return flow_to_me
        flow_from_me = 0
        u_level = self.level[u]
        for utov_i, (v, cap, vtou_i) in enumerate(self.to[u]):
            if self.level[v] != u_level + 1: continue
            if cap == 0: continue
            flow_to_v = self.__dfs(v, min(cap, flow_to_me - flow_from_me))
            if not flow_to_v: continue
            flow_from_me += flow_to_v
            self.to[u][utov_i][1] -= flow_to_v
            self.to[v][vtou_i][1] += flow_to_v
        return flow_from_me

    def __calculation(self):
        res = 0
        while self.__set_level():
            res += self.__dfs()
        return res

    # これが出力用
    def get_max_flow(self):
        if self.max_flow == -1:
            self.max_flow = self.__calculation()
        return self.max_flow

h,w=LI()
gg=LLI(h)
rr=LI()
cc=LI()

s=h+w
t=s+1
mf=Dinic(h+w+2,s,t)

ans=0
for u,r in enumerate(rr):
    mf.add_edge(s,u,r)
    mf.add_edge(u,t,sum(gg[u]))
    ans+=r
for u,c in enumerate(cc,h):
    mf.add_edge(s,u,c)
    ans+=c
    for v in range(h):
        mf.add_edge(u,v,gg[v][u-h])

ans-=mf.get_max_flow()
print(ans)
0