結果

問題 No.1266 7 Colors
ユーザー vwxyzvwxyz
提出日時 2023-11-30 10:42:06
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 5,363 bytes
コンパイル時間 347 ms
コンパイル使用メモリ 13,312 KB
実行使用メモリ 112,660 KB
最終ジャッジ日時 2024-09-26 13:50:43
合計ジャッジ時間 39,430 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 40 ms
12,288 KB
testcase_01 AC 40 ms
12,160 KB
testcase_02 AC 40 ms
12,160 KB
testcase_03 AC 1,568 ms
30,376 KB
testcase_04 AC 1,851 ms
69,032 KB
testcase_05 AC 1,579 ms
32,532 KB
testcase_06 AC 1,927 ms
73,852 KB
testcase_07 AC 2,077 ms
109,856 KB
testcase_08 AC 1,873 ms
70,340 KB
testcase_09 AC 1,734 ms
63,032 KB
testcase_10 AC 1,735 ms
60,976 KB
testcase_11 AC 1,564 ms
39,456 KB
testcase_12 AC 1,560 ms
42,552 KB
testcase_13 AC 1,643 ms
45,360 KB
testcase_14 AC 1,621 ms
32,508 KB
testcase_15 AC 2,088 ms
110,444 KB
testcase_16 AC 1,605 ms
43,176 KB
testcase_17 AC 1,977 ms
78,748 KB
testcase_18 TLE -
testcase_19 TLE -
testcase_20 TLE -
testcase_21 AC 684 ms
17,408 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
write=sys.stdout.write
#import pypyjit
#pypyjit.set_param('max_unroll_recursion=-1')
#sys.set_int_max_str_digits(10**9)

class UnionFind:
    def __init__(self,N,label=None,f=None,weighted=False,rollback=False):
        self.N=N
        self.parents=[None]*self.N
        self.size=[1]*self.N
        self.roots={i for i in range(self.N)}
        self.label=label
        if self.label!=None:
            self.label=[x for x in label]
        self.f=f
        self.weighted=weighted
        if self.weighted:
            self.weight=[0]*self.N
        self.rollback=rollback
        if self.rollback:
            self.operate_list=[]
            self.operate_set=[]

    def Find(self,x):
        stack=[]
        while self.parents[x]!=None:
            stack.append(x)
            x=self.parents[x]
        if not self.rollback:
            if self.weighted:
                w=0
                for y in stack[::-1]:
                    self.parents[y]=x
                    w+=self.weight[y]
                    self.weight[y]=w
            else:
                for y in stack[::-1]:
                    self.parents[y]=x
        return x

    def Union(self,x,y,w=None):
        root_x=self.Find(x)
        root_y=self.Find(y)
        if self.rollback:
            self.operate_list.append([])
            self.operate_set.append([])
        if root_x==root_y:
            if self.weighted:
                if self.weight[y]-self.weight[x]==w:
                    return True
                else:
                    return False
        else:
            if self.size[root_x]<self.size[root_y]:
                x,y=y,x
                root_x,root_y=root_y,root_x
                if self.weighted:
                    w=-w
            if self.rollback:
                self.operate_list[-1].append((self.parents,root_y,self.parents[root_y]))
                self.operate_list[-1].append((self.size,root_x,self.size[root_x]))
                self.operate_set[-1].append(root_y)
                if self.label!=None:
                    self.operate_list[-1]((self.label,root_x,self.label[root_x]))
                if self.weighted:
                    self.operate_list[-1].append((self.weight,root_y,self.weight[root_y]))
            self.parents[root_y]=root_x
            self.size[root_x]+=self.size[root_y]
            self.roots.remove(root_y)
            if self.label!=None:
                self.label[root_x]=self.f(self.label[root_x],self.label[root_y])
            if self.weighted:
                self.weight[root_y]=w+self.weight[x]-self.weight[y]

    def Size(self,x):
        return self.size[self.Find(x)]

    def Same(self,x,y):
        return self.Find(x)==self.Find(y)

    def Label(self,x):
        return self.label[self.Find(x)]

    def Weight(self,x,y):
        root_x=self.Find(x)
        root_y=self.Find(y)
        if root_x!=root_y:
            return None
        return self.weight[y]-self.weight[x]

    def Roots(self):
        return list(self.roots)

    def Linked_Components_Count(self):
        return len(self.roots)

    def Linked_Components(self):
        linked_components=defaultdict(list)
        for x in range(self.N):
            linked_components[self.Find(x)].append(x)
        return linked_components
    
    def Rollback(self):
        assert self.rollback
        if self.operate_list:
            for lst,x,v in self.operate_list.pop():
                lst[x]=v
            for x in self.operate_set.pop():
                self.roots.add(x)            
            return True
        else:
            return False

    def __str__(self):
        linked_components=defaultdict(list)
        for x in range(self.N):
            linked_components[self.Find(x)].append(x)
        return "\n".join(f"{r}: {linked_components[r]}" for r in sorted(list(linked_components.keys())))

N,M,Q=map(int,readline().split())
S=[[int(s) for s in readline().rstrip()] for n in range(N)]
graph=[[] for x in range(N)]
UF=UnionFind(N*7)
for x in range(N):
    for c in range(7):
        if S[x][c] and S[x][(c+1)%7]:
            UF.Union(x*7+c,x*7+(c+1)%7)
for m in range(M):
    u,v=map(int,readline().split())
    u-=1;v-=1
    graph[u].append(v)
    graph[v].append(u)
    for c in range(7):
        if S[u][c] and S[v][c]:
            UF.Union(u*7+c,v*7+c)
for _ in range(Q):
    q,x,c=map(int,readline().split())
    if q==1:
        x-=1;c-=1
        S[x][c]=1
        if S[x][(c-1)%7]:
            UF.Union(x*7+c,x*7+(c-1)%7)
        if S[x][(c+1)%7]:
            UF.Union(x*7+c,x*7+(c+1)%7)
        for y in graph[x]:
            if S[y][c]:
                UF.Union(x*7+c,y*7+c)
    else:
        x-=1
        ans=UF.Size(x*7)
        print(ans)
0