結果

問題 No.2478 Disjoint-Sparse-Table Optimization
ユーザー maspymaspy
提出日時 2023-11-30 12:57:47
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 6 ms / 2,000 ms
コード長 18,806 bytes
コンパイル時間 6,335 ms
コンパイル使用メモリ 334,380 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-26 13:56:37
合計ジャッジ時間 7,124 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 4 ms
5,376 KB
testcase_04 AC 4 ms
5,376 KB
testcase_05 AC 3 ms
5,376 KB
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 5 ms
5,376 KB
testcase_08 AC 5 ms
5,376 KB
testcase_09 AC 4 ms
5,376 KB
testcase_10 AC 6 ms
5,376 KB
testcase_11 AC 5 ms
5,376 KB
testcase_12 AC 3 ms
5,376 KB
testcase_13 AC 5 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define ALL(v) (v).begin(), (v).end()
const int inf = 0x3fffffff;
const ll INF = 0x1fffffffffffffff;

// https://judge.yosupo.jp/submission/81021
class GeneralWeightedMatching {
  struct E {
    int u, v;
    ll w;
  };
  int n, m, in;
  vector<vector<E>> G;
  vector<int> mate, slack, root, par, isS, used;
  vector<vector<int>> flower, belong;
  vector<ll> dual;
  queue<int> que;

  ll dist(const E& e) { return dual[e.u] + dual[e.v] - e.w; }
  void update(int u, int v) {
    if (!slack[v] or dist(G[u][v]) < dist(G[slack[v]][v])) slack[v] = u;
  }
  void recalc(int v) {
    slack[v] = 0;
    rep(i, 1, n + 1) if (G[i][v].w and root[i] != v and isS[root[i]] == 1)
        update(i, v);
  }
  void push(int v) {
    if (v <= n)
      que.push(v);
    else
      for (auto& nxt: flower[v]) push(nxt);
  }
  void set(int v, int rt) {
    root[v] = rt;
    if (v > n)
      for (auto& nxt: flower[v]) set(nxt, rt);
  }
  int findeven(int b, int v) {
    int pos = find(ALL(flower[b]), v) - flower[b].begin();
    if (pos & 1) {
      reverse(flower[b].begin() + 1, flower[b].end());
      pos = flower[b].size() - pos;
    }
    return pos;
  }
  void match(int u, int v) {
    mate[u] = G[u][v].v;
    if (u > n) {
      int x = belong[u][G[u][v].u];
      int pos = findeven(u, x);
      rep(i, 0, pos) match(flower[u][i], flower[u][i ^ 1]);
      match(x, v);
      rotate(flower[u].begin(), flower[u].begin() + pos, flower[u].end());
    }
  }
  void link(int u, int v) {
    for (;;) {
      int nv = root[mate[u]];
      match(u, v);
      if (!nv) break;
      v = nv, u = root[par[nv]];
      match(v, u);
    }
  }
  void make(int u, int v, int lca) {
    int id = n + 1;
    while (id <= m and root[id]) id++;
    if (id > m) m++;
    flower[id].clear();
    rep(i, 1, m + 1) G[id][i].w = G[i][id].w = 0;
    rep(i, 1, n + 1) belong[id][i] = 0;
    isS[id] = 1, dual[id] = 0, mate[id] = mate[lca];
    while (u != lca) {
      flower[id].push_back(u);
      u = root[mate[u]];
      push(u);
      flower[id].push_back(u);
      u = root[par[u]];
    }
    flower[id].push_back(lca);
    reverse(ALL(flower[id]));
    while (v != lca) {
      flower[id].push_back(v);
      v = root[mate[v]];
      push(v);
      flower[id].push_back(v);
      v = root[par[v]];
    }
    set(id, id);
    for (auto& c: flower[id]) {
      rep(i, 1, m + 1) if (!G[id][i].w or dist(G[c][i]) < dist(G[id][i])) {
        G[id][i] = G[c][i], G[i][id] = G[i][c];
      }
      rep(i, 1, n + 1) if (belong[c][i]) belong[id][i] = c;
    }
    recalc(id);
  }
  void expand(int b) {
    for (auto& c: flower[b]) set(c, c);
    int x = belong[b][G[b][par[b]].u];
    isS[x] = 2, par[x] = par[b];
    int pos = findeven(b, x);
    for (int i = 0; i < pos; i += 2) {
      int T = flower[b][i], S = flower[b][i + 1];
      isS[S] = 1, isS[T] = 2;
      par[T] = G[S][T].u;
      slack[S] = slack[T] = 0;
      push(S);
    }
    rep(i, pos + 1, flower[b].size()) {
      isS[flower[b][i]] = 0;
      recalc(flower[b][i]);
    }
    flower[b].clear();
    root[b] = 0;
  }
  bool path(const E& e) {
    int u = root[e.u], v = root[e.v];
    if (!isS[v]) {
      par[v] = e.u;
      isS[v] = 2;
      int nu = root[mate[v]];
      slack[v] = slack[nu] = 0;
      isS[nu] = 1;
      push(nu);
    } else if (isS[v] == 1) {
      int lca = 0, bu = u, bv = v;
      in++;
      while (bu) {
        used[bu] = in;
        bu = root[mate[bu]];
        if (bu) bu = root[par[bu]];
      }
      while (bv) {
        if (used[bv] == in) {
          lca = bv;
          break;
        }
        bv = root[mate[bv]];
        if (bv) bv = root[par[bv]];
      }
      if (lca)
        make(u, v, lca);
      else {
        link(u, v), link(v, u);
        return true;
      }
    }
    return false;
  }
  bool augment() {
    isS = slack = par = vector<int>(n * 2);
    que = queue<int>();
    rep(i, 1, m + 1) if (root[i] == i and !mate[i]) {
      isS[i] = 1;
      push(i);
    }
    if (que.empty()) return false;
    for (;;) {
      while (!que.empty()) {
        int v = que.front();
        que.pop();
        rep(i, 1, n + 1) if (G[v][i].w and root[i] != root[v]) {
          if (!dist(G[v][i])) {
            if (path(G[v][i])) return true;
          } else if (isS[root[i]] != 2)
            update(v, root[i]);
        }
      }
      ll delta = INF;
      rep(i, n + 1, m + 1) if (root[i] == i and isS[i] == 2)
          chmin(delta, dual[i] / 2);
      rep(i, 1, m + 1) if (root[i] == i and slack[i] and isS[i] != 2) {
        if (!isS[i])
          chmin(delta, dist(G[slack[i]][i]));
        else
          chmin(delta, dist(G[slack[i]][i]) / 2);
      }
      rep(i, 1, n + 1) {
        if (isS[root[i]] == 1) {
          dual[i] -= delta;
          if (dual[i] <= 0) return false;
        } else if (isS[root[i]] == 2)
          dual[i] += delta;
      }
      rep(i, n + 1, m + 1) if (root[i] == i and isS[i]) {
        if (isS[i] == 1)
          dual[i] += delta * 2;
        else
          dual[i] -= delta * 2;
      }
      rep(i, 1, m + 1) if (root[i] == i and slack[i] and root[slack[i]] != i) {
        if (dist(G[slack[i]][i]) == 0 and path(G[slack[i]][i])) return true;
      }
      rep(i, n + 1, m + 1) if (root[i] == i and isS[i] == 2 and dual[i] == 0)
          expand(i);
    }
  }

public:
  GeneralWeightedMatching(int _n)
      : n(_n),
        m(n),
        in(0),
        G(n * 2, vector<E>(n * 2)),
        mate(n * 2),
        root(n * 2),
        used(n * 2),
        flower(n * 2),
        belong(n * 2, vector<int>(n * 2)),
        dual(n * 2) {
    rep(i, 0, n + 1) {
      root[i] = i;
      belong[i][i] = i;
      if (i) dual[i] = INF;
      rep(j, 0, n + 1) G[i][j] = E{i, j, 0};
    }
  }
  void add_edge(int u, int v, ll w) {
    u++, v++;
    chmax(G[u][v].w, w * 2);
    chmax(G[v][u].w, w * 2);
  }
  vector<int> run() {
    while (augment())
      ;
    vector<int> res(n, -1);
    rep(i, 1, n + 1) if (mate[i]) res[i - 1] = mate[i] - 1;
    return res;
  }
};

void solve() {
  LL(N);
  vi L(N), R(N);
  FOR(i, N) {
    LL(a, b);
    L[i] = a - 1, R[i] = b - 1;
  }
  VEC(ll, A, 2 * N - 1);
  auto Ac = cumsum<ll>(A);

  ll ANS = 0;
  FOR(i, N) ANS += Ac[R[i]] - Ac[L[i]];

  vv(ll, mat, N, N);
  FOR(i, N) FOR(j, N) {
    if (L[i] < L[j] && L[j] < R[i] && R[i] < R[j]) {
      ll w = Ac[R[i]] - Ac[L[j]];
      mat[i][j] = mat[j][i] = w;
    }
  }

  GeneralWeightedMatching X(N);
  FOR(j, N) FOR(i, j) if (mat[i][j] > 0) X.add_edge(i, j, mat[i][j]);
  auto match = X.run();
  FOR(i, N) {
    int j = match[i];
    if (i < j) { ANS -= mat[i][j]; }
  }

  // print(match);
  print(ANS);
}

signed main() {
  solve();
  return 0;
}
0