結果

問題 No.321 (P,Q)-サンタと街の子供たち
ユーザー 37zigen
提出日時 2016-05-21 15:10:55
言語 Java
(openjdk 23)
結果
AC  
実行時間 821 ms / 2,000 ms
コード長 2,965 bytes
コンパイル時間 1,996 ms
コンパイル使用メモリ 77,340 KB
実行使用メモリ 69,152 KB
最終ジャッジ日時 2024-07-06 22:13:30
合計ジャッジ時間 23,407 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #

package yukicoder;
import java.util.Scanner;
public class Main{
	public static void main(String[] args){
		new Main().solve();
	}
	void solve(){
		Scanner sc=new Scanner(System.in);
		int p=sc.nextInt();
		int q=sc.nextInt();
		int n=sc.nextInt();
		long[] x=new long[n];
		long[] y=new long[n];
		if(p==0&&q==0){
			int ret=0;
			for(int i=0;i<n;i++){
				x[i]=sc.nextInt();
				y[i]=sc.nextInt();
				if(x[i]==0&&y[i]==0)ret++;
			}
			System.out.println(ret);
			return;
		}
		if(p==0){
			int ret=0;
			for(int i=0;i<n;i++){
				x[i]=sc.nextInt();
				y[i]=sc.nextInt();
				if(x[i]%q==0&&y[i]%q==0)ret++;
			}
			System.out.println(ret);
			return;
		}else if(q==0){
			int ret=0;
			for(int i=0;i<n;i++){
				x[i]=sc.nextInt();
				y[i]=sc.nextInt();
				if(x[i]%p==0&&y[i]%p==0)ret++;
			}
			System.out.println(ret);
			return;
		}
		long gcd=gcd(Math.abs(p),Math.abs(q));
		for(int i=0;i<n;i++){
			x[i]=sc.nextInt();
			y[i]=sc.nextInt();
		}
		p/=gcd;q/=gcd;
		if(p%2==0||q%2==0){
			int ret=0;
			for(int i=0;i<n;i++){
				if(x[i]%gcd==0&&y[i]%gcd==0)ret++;
			}
			System.out.println(ret);
		}
		else{
			int ret=0;
			for(int i=0;i<n;i++){
				if(x[i]%gcd==0&&y[i]%gcd==0){
					x[i]/=gcd;
					y[i]/=gcd;
					if((x[i]+y[i])%2==0)ret++;
				}
			}
			System.out.println(ret);
		}

		/*
		 * 座標x,yがそれぞれ
		 * x=P(n+l)+Q(m+k)
		 * y=Q(n-l)+P(m-k)
		 * (n,mは任意の整数)の形で表すことができるなら、プレゼントが配られる。
		 * ここで、Pn+Qmはgcd(P,Q)*整数という形ですべて尽くされ、両者の表す整数の集合は一致する。
		 * よって、問題は、座標x,yが両方gcd(P,Q)で割り切れるものについてのみ考えればよい。
		 * P,Qをそれぞれgcd(P,Q)で割ったものをp,qと置く。x,yもgcdで割ってあるとする。
		 * ここで、(2P,0),(2Q,0)には必ずたどり着けることに注意する。すると、訪れることが可能な点から、
		 * x,yにそれぞれ任意の偶数を加えた点にも移動できることが分かる。
		 * よって(1,1),(1,0)に到達できるかのみ調べればよい。
		 * ①x=1=pn+qm
		 * ②1or0=qn+pm+(任意の偶数)
		 * これを満たすある整数k,l,m,nが存在すればよい。
		 * ①は必ず存在する。
		 * pが奇数,qが偶数のとき、mが偶数で、nは偶奇どちらの形にすることもできる。このとき②は1,0どちらも取れる。
		 * p,qが両方奇数の時、m,nの一方は奇数でもう一方は偶数。このとき、②は1しか取れない。
		 * よって(p+q)mod 2=0のとき、カラマツ模様に移動でき、
		 * p+q mod 2=1 のとき、すべての点に移動できる。
		 *
		 */

	}
	long lcm(long t1,long t2){
		long a=gcd(t1,t2);
		long tt1=t1/a;
		long tt2=t2/a;
		return tt1*tt2*a;
	}
	long gcd(long t1,long t2){
		if(t1<t2){
			long d=t2;
			t2=t1;
			t1=d;
		}
		if(t2==0)return t1;
		return gcd(t2,t1%t2);
	}
}
0