結果
問題 | No.2409 Strange Werewolves |
ユーザー | ZrjaK |
提出日時 | 2023-11-30 16:43:05 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 18 ms / 2,000 ms |
コード長 | 23,762 bytes |
コンパイル時間 | 5,638 ms |
コンパイル使用メモリ | 332,548 KB |
実行使用メモリ | 10,324 KB |
最終ジャッジ日時 | 2024-09-26 14:07:37 |
合計ジャッジ時間 | 6,473 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 18 ms
10,324 KB |
testcase_04 | AC | 14 ms
9,060 KB |
testcase_05 | AC | 6 ms
5,592 KB |
testcase_06 | AC | 12 ms
8,412 KB |
testcase_07 | AC | 11 ms
7,644 KB |
testcase_08 | AC | 8 ms
5,852 KB |
testcase_09 | AC | 8 ms
6,488 KB |
testcase_10 | AC | 4 ms
5,376 KB |
testcase_11 | AC | 3 ms
5,376 KB |
testcase_12 | AC | 4 ms
5,376 KB |
testcase_13 | AC | 7 ms
5,464 KB |
testcase_14 | AC | 8 ms
5,976 KB |
testcase_15 | AC | 12 ms
7,892 KB |
testcase_16 | AC | 7 ms
5,464 KB |
testcase_17 | AC | 4 ms
5,376 KB |
ソースコード
#ifdef ONLINE_JUDGE #pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt") #endif #include <bits/stdc++.h> #include <ext/rope> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/hash_policy.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/trie_policy.hpp> #include <ext/pb_ds/priority_queue.hpp> using namespace std; using namespace __gnu_cxx; using namespace __gnu_pbds; template <class T> using pbds_set = tree<T, null_type, less_equal<T>, rb_tree_tag,tree_order_statistics_node_update>; using Trie = trie<string, null_type, trie_string_access_traits<>, pat_trie_tag, trie_prefix_search_node_update>; // template <class T> using heapq = __gnu_pbds::priority_queue<T, greater<T>, pairing_heap_tag>; template <class T> using heapq = std::priority_queue<T, vector<T>, greater<T>>; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = __uint128_t; using f128 = __float128; using ld = long double; using ui = unsigned int; using ull = unsigned long long; using pii = pair<int, int>; using pll = pair<ll, ll>; using pdd = pair<ld, ld>; using vi = vector<int>; using vvi = vector<vector<int>>; using vll = vector<ll>; using vvll = vector<vector<ll>>; using vpii = vector<pii>; using vpll = vector<pll>; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'000'000'000; template <> constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = std::priority_queue<T>; template <class T> using pqg = std::priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) #define lb lower_bound #define ub upper_bound #define pb push_back #define pf push_front #define eb emplace_back #define fi first #define se second #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(_1, _2, _3, name, ...) name #define rep1(n) for(ll _ = 0; _ < n; ++_) #define rep2(i, n) for(ll i = 0; i < n; ++i) #define rep3(i, a, b) for(ll i = a; i < b; ++i) #define rep4(i, a, b, c) for(int i = a; i < b; i += c) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1) (__VA_ARGS__) #define rrep1(n) for(ll i = n; i--; ) #define rrep2(i, n) for(ll i = n; i--; ) #define rrep3(i, a, b) for(ll i = a; i > b; i--) #define rrep4(i, a, b, c) for(ll i = a; i > b; i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1) (__VA_ARGS__) #define each1(i, a) for(auto&& i : a) #define each2(x, y, a) for(auto&& [x, y] : a) #define each3(x, y, z, a) for(auto&& [x, y, z] : a) #define each(...) overload4(__VA_ARGS__, each3, each2, each1) (__VA_ARGS__) #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1) (__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R) (__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define len(x) (int)x.size() #define elif else if #define all1(i) begin(i), end(i) #define all2(i, a) begin(i), begin(i) + a #define all3(i, a, b) begin(i) + a, begin(i) + b #define all(...) overload3(__VA_ARGS__, all3, all2, all1) (__VA_ARGS__) #define rall1(i) rbegin(i), rend(i) #define rall2(i, a) rbegin(i), rbegin(i) + a #define rall3(i, a, b) rbegin(i) + a, rbegin(i) + b #define rall(...) overload3(__VA_ARGS__, rall3, rall2, rall1) (__VA_ARGS__) #define mst(x, a) memset(x, a, sizeof(x)) #define bitcnt(x) (__builtin_popcountll(x)) #define endl "\n" #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() #define SORT(a) sort(all(a)) #define REV(a) reverse(all(a)) int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template<class T> auto max(const T& a){ return *max_element(all(a)); } template<class T> auto min(const T& a){ return *min_element(all(a)); } template <typename T, typename U> T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T, typename U> pair<T, T> divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); for (int i = 0; i < N; i++) B[i + 1] = B[i] + A[i]; if (off == 0) B.erase(B.begin()); return B; } template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { assert(!que.empty()); T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { assert(!que.empty()); T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { while (iter--) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } mt19937 rng( chrono::steady_clock::now().time_since_epoch().count() ); #define Ran(a, b) rng() % ( (b) - (a) + 1 ) + (a) struct custom_hash { static uint64_t splitmix64(uint64_t x) { // http://xorshift.di.unimi.it/splitmix64.c x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } size_t operator()(pair<uint64_t,uint64_t> x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x.first + FIXED_RANDOM) ^ (splitmix64(x.second + FIXED_RANDOM) >> 1); } }; #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } const i128 ONE = 1; template <typename Iterable> auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(fastio::wt(*v.begin())) { for (auto it = v.begin(); it != v.end();) { fastio::wt(*it); if (++it != v.end()) fastio::wt(sep); } fastio::wt(end); } ll gcd(ll x, ll y) { if(!x) return y; if(!y) return x; int t = __builtin_ctzll(x | y); x >>= __builtin_ctzll(x); do { y >>= __builtin_ctzll(y); if (x > y) swap(x, y); y -= x; } while (y); return x << t; } ll lcm(ll x, ll y) { return x * y / gcd(x, y); } ll exgcd(ll a, ll b, ll &x, ll &y) { if(!b) return x = 1, y = 0, a; ll d = exgcd(b, a % b, x, y); ll t = x; x = y; y = t - a / b * x; return d; } ll max(ll x, ll y) { return x > y ? x : y; } ll min(ll x, ll y) { return x < y ? x : y; } ll Mod(ll x, int mod) { return (x % mod + mod) % mod; } ll pow(ll x, ll y, ll mod){ ll res = 1, cur = x; while (y) { if (y & 1) res = res * cur % mod; cur = ONE * cur * cur % mod; y >>= 1; } return res % mod; } ll probabilityMod(ll x, ll y, ll mod) { return x * pow(y, mod-2, mod) % mod; } vvi getGraph(int n, int m, bool directed = false) { vvi res(n); rep(_, 0, m) { INT(u, v); u--, v--; res[u].emplace_back(v); if(!directed) res[v].emplace_back(u); } return res; } vector<vpii> getWeightedGraph(int n, int m, bool directed = false) { vector<vpii> res(n); rep(_, 0, m) { INT(u, v, w); u--, v--; res[u].emplace_back(v, w); if(!directed) res[v].emplace_back(u, w); } return res; } template <class... Args> auto ndvector(size_t n, Args &&...args) { if constexpr (sizeof...(args) == 1) { return vector(n, args...); } else { return vector(n, ndvector(args...)); } } const ll LINF = 0x1fffffffffffffff; const ll MINF = 0x7fffffffffff; const int INF = 0x3fffffff; const int MOD = 1000000007; const int MODD = 998244353; const int N = 1e6 + 10; #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; using mint = modint998; void solve() { INT(X, Y, Z, W); mint ans = 0; if (Z == 0) { ans = mint(X) * C<mint>(Y, W) * fact<mint>(X + Y - Z - W - 1); } else { ans = mint(Y) * C<mint>(X, Z) * fact<mint>(X + Y - Z - W - 1); } print(ans); } signed main() { int T = 1; // read(T); while (T--) { solve(); } return 0; }