結果
問題 | No.2573 moving up |
ユーザー | 👑 AngrySadEight |
提出日時 | 2023-12-01 08:51:12 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,888 bytes |
コンパイル時間 | 388 ms |
コンパイル使用メモリ | 82,364 KB |
実行使用メモリ | 205,704 KB |
最終ジャッジ日時 | 2024-09-26 15:12:37 |
合計ジャッジ時間 | 17,898 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 120 ms
77,700 KB |
testcase_01 | TLE | - |
testcase_02 | TLE | - |
testcase_03 | TLE | - |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | AC | 390 ms
94,372 KB |
testcase_09 | AC | 776 ms
88,404 KB |
testcase_10 | AC | 1,680 ms
168,156 KB |
testcase_11 | AC | 487 ms
99,660 KB |
testcase_12 | AC | 989 ms
128,176 KB |
testcase_13 | AC | 1,864 ms
173,784 KB |
testcase_14 | AC | 213 ms
82,716 KB |
testcase_15 | AC | 202 ms
81,512 KB |
testcase_16 | AC | 196 ms
80,368 KB |
testcase_17 | AC | 485 ms
88,980 KB |
testcase_18 | AC | 934 ms
131,052 KB |
testcase_19 | AC | 1,496 ms
157,088 KB |
testcase_20 | AC | 272 ms
85,512 KB |
testcase_21 | AC | 290 ms
86,884 KB |
testcase_22 | AC | 414 ms
88,276 KB |
testcase_23 | AC | 367 ms
91,476 KB |
testcase_24 | AC | 693 ms
113,692 KB |
testcase_25 | AC | 1,155 ms
136,148 KB |
testcase_26 | AC | 302 ms
87,528 KB |
testcase_27 | AC | 120 ms
78,444 KB |
testcase_28 | AC | 115 ms
78,348 KB |
testcase_29 | AC | 130 ms
78,032 KB |
testcase_30 | AC | 123 ms
78,500 KB |
ソースコード
# Primal-Dual: https://tjkendev.github.io/procon-library/python/min_cost_flow/primal-dual.html from heapq import heappush, heappop from collections import deque class MinCostFlow: INF = 10**18 def __init__(self, N): self.N = N self.G = [[] for i in range(N)] def add_edge(self, fr, to, cap, cost): forward = [to, cap, cost, None] backward = forward[3] = [fr, 0, -cost, forward] self.G[fr].append(forward) self.G[to].append(backward) def flow(self, s, t, f): N = self.N G = self.G INF = MinCostFlow.INF res = 0 H = [0]*N prv_v = [0]*N prv_e = [None]*N d0 = [INF]*N dist = [INF]*N while f: dist[:] = d0 dist[s] = 0 que = [(0, s)] while que: c, v = heappop(que) if dist[v] < c: continue r0 = dist[v] + H[v] for e in G[v]: w, cap, cost, _ = e if cap > 0 and r0 + cost - H[w] < dist[w]: dist[w] = r = r0 + cost - H[w] prv_v[w] = v prv_e[w] = e heappush(que, (r, w)) if dist[t] == INF: return None for i in range(N): H[i] += dist[i] d = f v = t while v != s: d = min(d, prv_e[v][1]) v = prv_v[v] f -= d res += d * H[t] v = t while v != s: e = prv_e[v] e[1] -= d e[3][1] += d v = prv_v[v] return res INF = 10 ** 17 + 1 H, W = map(int, input().split()) dists = [[INF for _ in range(W)] for _ in range(W)] dist = [[INF for _ in range(H + W)] for _ in range(H)] dq = deque() dx = [-1, -1, 0, 0, 1, 1] dy = [-1, 0, -1, 1, 0, 1] for i in range(W): x, y = map(int, input().split()) for j in range(H): for k in range(H + W): dist[j][k] = INF dist[x - 1][y - 1] = 0 dq.append([x - 1, y - 1]) while len(dq): px, py = dq.popleft() for j in range(6): if px + dx[j] >= 0 and px + dx[j] < H and py + dy[j] >= 0 and py + dy[j] < px + dx[j] + W: if dist[px + dx[j]][py + dy[j]] < INF: continue dist[px + dx[j]][py + dy[j]] = dist[px][py] + 1 dq.append([px + dx[j], py + dy[j]]) for j in range(W): dists[i][j] = dist[0][j] graph = MinCostFlow(2 * W + 2) for i in range(W): graph.add_edge(2 * W, i, 1, 0) graph.add_edge(W + i, 2 * W + 1, 1, 0) for i in range(W): for j in range(W): graph.add_edge(i, W + j, 1, dists[i][j]) ans = graph.flow(2 * W, 2 * W + 1, W) print(ans)