結果
問題 | No.694 square1001 and Permutation 3 |
ユーザー | vwxyz |
提出日時 | 2023-12-01 20:57:32 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
|
実行時間 | - |
コード長 | 14,220 bytes |
コンパイル時間 | 325 ms |
コンパイル使用メモリ | 81,792 KB |
実行使用メモリ | 257,664 KB |
最終ジャッジ日時 | 2024-09-26 15:51:38 |
合計ジャッジ時間 | 5,463 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 46 ms
57,216 KB |
testcase_01 | AC | 42 ms
57,088 KB |
testcase_02 | AC | 46 ms
57,344 KB |
testcase_03 | AC | 50 ms
65,024 KB |
testcase_04 | AC | 51 ms
65,408 KB |
testcase_05 | AC | 52 ms
65,536 KB |
testcase_06 | AC | 54 ms
66,176 KB |
testcase_07 | AC | 286 ms
89,436 KB |
testcase_08 | AC | 412 ms
122,216 KB |
testcase_09 | MLE | - |
testcase_10 | AC | 301 ms
88,496 KB |
testcase_11 | MLE | - |
testcase_12 | MLE | - |
testcase_13 | AC | 43 ms
57,088 KB |
ソースコード
import sys readline=sys.stdin.readline from collections import defaultdict,Counter class UnionFind: def __init__(self,N,label=None,f=None,weighted=False,rollback=False): self.N=N self.parents=[None]*self.N self.size=[1]*self.N self.roots={i for i in range(self.N)} self.label=label if self.label!=None: self.label=[x for x in label] self.f=f self.weighted=weighted if self.weighted: self.weight=[0]*self.N self.rollback=rollback if self.rollback: self.operate_list=[] self.operate_set=[] def Find(self,x): stack=[] while self.parents[x]!=None: stack.append(x) x=self.parents[x] if not self.rollback: if self.weighted: w=0 for y in stack[::-1]: self.parents[y]=x w+=self.weight[y] self.weight[y]=w else: for y in stack[::-1]: self.parents[y]=x return x def Union(self,x,y,w=None): root_x=self.Find(x) root_y=self.Find(y) if self.rollback: self.operate_list.append([]) self.operate_set.append([]) if root_x==root_y: if self.weighted: if self.weight[y]-self.weight[x]==w: return True else: return False else: if self.size[root_x]<self.size[root_y]: x,y=y,x root_x,root_y=root_y,root_x if self.weighted: w=-w if self.rollback: self.operate_list[-1].append((self.parents,root_y,self.parents[root_y])) self.operate_list[-1].append((self.size,root_x,self.size[root_x])) self.operate_set[-1].append(root_y) if self.label!=None: self.operate_list[-1]((self.label,root_x,self.label[root_x])) if self.weighted: self.operate_list[-1].append((self.weight,root_y,self.weight[root_y])) self.parents[root_y]=root_x self.size[root_x]+=self.size[root_y] self.roots.remove(root_y) if self.label!=None: self.label[root_x]=self.f(self.label[root_x],self.label[root_y]) if self.weighted: self.weight[root_y]=w+self.weight[x]-self.weight[y] def Size(self,x): return self.size[self.Find(x)] def Same(self,x,y): return self.Find(x)==self.Find(y) def Label(self,x): return self.label[self.Find(x)] def Weight(self,x,y): root_x=self.Find(x) root_y=self.Find(y) if root_x!=root_y: return None return self.weight[y]-self.weight[x] def Roots(self): return list(self.roots) def Linked_Components_Count(self): return len(self.roots) def Linked_Components(self): linked_components=defaultdict(list) for x in range(self.N): linked_components[self.Find(x)].append(x) return linked_components def Rollback(self): assert self.rollback if self.operate_list: for lst,x,v in self.operate_list.pop(): lst[x]=v for x in self.operate_set.pop(): self.roots.add(x) return True else: return False def __str__(self): linked_components=defaultdict(list) for x in range(self.N): linked_components[self.Find(x)].append(x) return "\n".join(f"{r}: {linked_components[r]}" for r in sorted(list(linked_components.keys()))) class Graph: def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")): self.V=V self.directed=directed self.weighted=weighted self.inf=inf if graph!=None: self.graph=graph """ self.edges=[] for i in range(self.V): if self.weighted: for j,d in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j,d)) else: for j in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j)) """ else: self.edges=edges self.graph=[[] for i in range(self.V)] if weighted: for i,j,d in self.edges: self.graph[i].append((j,d)) if not self.directed: self.graph[j].append((i,d)) else: for i,j in self.edges: self.graph[i].append(j) if not self.directed: self.graph[j].append(i) def Warshall_Floyd(self,route_restoration=False): dist=[[self.inf]*self.V for i in range(self.V)] for i in range(self.V): dist[i][i]=0 if route_restoration: parents=[[j for j in range(self.V)] for i in range(self.V)] for i,j,d in self.edges: if i==j: continue if dist[i][j]>d: dist[i][j]=d if route_restoration: parents[i][j]=i if not self.directed and dist[j][i]>d: dist[j][i]=d if route_restoration: parents[j][i]=j for k in range(self.V): for i in range(self.V): for j in range(self.V): if dist[i][j]>dist[i][k]+dist[k][j]: dist[i][j]=dist[i][k]+dist[k][j] if route_restoration: parents[i][j]=parents[k][j] for i in range(self.V): if dist[i][i]<0: for j in range(self.V): if dist[i][j]!=self.inf: dist[i][j]=-self.inf if route_restoration: for i in range(self.V): if dist[i][i]==0: parents[i][i]=None return dist,parents else: return dist def Kruskal(self,maximize=False,spanning_tree=False): UF=UnionFind(self.V) sorted_edges=sorted(self.edges if self.weighted else [(x,y,1) for x,y in self.edges],key=lambda tpl:tpl[2],reverse=maximize) if spanning_tree: st=[] else: cost=0 for x,y,d in sorted_edges: if not UF.Same(x,y): UF.Union(x,y) if spanning_tree: st.append((x,y,d)) else: cost+=d return st if spanning_tree else cost def Inversion_Number(lst,weight=False,weakly=False): compress,decompress=Compress(lst) compressed_lst=[compress[x] for x in lst] N=len(compress) if not weight: weight=[1]*len(lst) ST=Segment_Tree(N,lambda x,y:x+y,0) inversion_number=0 for c,x in zip(weight,compressed_lst): inversion_number+=ST.Fold(x if weakly else x+1,N)*c ST[x]+=c return inversion_number def Compress(lst): decomp=sorted(list(set(lst))) comp={x:i for i,x in enumerate(decomp)} return comp,decomp class Segment_Tree: def __init__(self,N,f,e,lst=None,dynamic=False): self.f=f self.e=e self.N=N if dynamic: self.segment_tree=defaultdict(lambda:self.e) else: if lst==None: self.segment_tree=[self.e]*2*self.N else: assert len(lst)<=self.N self.segment_tree=[self.e]*self.N+[x for x in lst]+[self.e]*(N-len(lst)) for i in range(self.N-1,0,-1): self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1]) def __getitem__(self,i): if type(i)==int: if -self.N<=i<0: return self.segment_tree[i+self.N*2] elif 0<=i<self.N: return self.segment_tree[i+self.N] else: raise IndexError("list index out of range") else: a,b,c=i.start,i.stop,i.step if a==None: a=self.N else: a+=self.N if b==None: b=self.N*2 else: b+=self.N return self.segment_tree[slice(a,b,c)] def __setitem__(self,i,x): if -self.N<=i<0: i+=self.N*2 elif 0<=i<self.N: i+=self.N else: raise IndexError("list index out of range") self.segment_tree[i]=x while i>1: i>>= 1 self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1]) def Build(self,lst): for i,x in enumerate(lst,self.N): self.segment_tree[i]=x for i in range(self.N-1,0,-1): self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1]) def Fold(self,L=None,R=None): if L==None: L=self.N else: L+=self.N if R==None: R=self.N*2 else: R+=self.N vL=self.e vR=self.e while L<R: if L&1: vL=self.f(vL,self.segment_tree[L]) L+=1 if R&1: R-=1 vR=self.f(self.segment_tree[R],vR) L>>=1 R>>=1 return self.f(vL,vR) def Fold_Index(self,L=None,R=None): if L==None: L=self.N else: L+=self.N if R==None: R=self.N*2 else: R+=self.N if L==R: return None x=self.Fold(L-self.N,R-self.N) while L<R: if L&1: if self.segment_tree[L]==x: i=L break L+=1 if R&1: R-=1 if self.segment_tree[R]==x: i=R break L>>=1 R>>=1 while i<self.N: if self.segment_tree[i]==self.segment_tree[i<<1]: i<<=1 else: i<<=1 i|=1 i-=self.N return i def Bisect_Right(self,L=None,f=None): if L==self.N: return self.N if L==None: L=0 L+=self.N vl=self.e vr=self.e l,r=L,self.N*2 while l<r: if l&1: vl=self.f(vl,self.segment_tree[l]) l+=1 if r&1: r-=1 vr=self.f(self.segment_tree[r],vr) l>>=1 r>>=1 if f(self.f(vl,vr)): return self.N v=self.e while True: while L%2==0: L>>=1 vv=self.f(v,self.segment_tree[L]) if f(vv): v=vv L+=1 else: while L<self.N: L<<=1 vv=self.f(v,self.segment_tree[L]) if f(vv): v=vv L+=1 return L-self.N def Bisect_Left(self,R=None,f=None): if R==0: return 0 if R==None: R=self.N R+=self.N vl=self.e vr=self.e l,r=self.N,R while l<r: if l&1: vl=self.f(vl,self.segment_tree[l]) l+=1 if r&1: r-=1 vr=self.f(self.segment_tree[r],vr) l>>=1 r>>=1 if f(self.f(vl,vr)): return 0 v=self.e while True: R-=1 while R>1 and R%2: R>>=1 vv=self.f(self.segment_tree[R],v) if f(vv): v=vv else: while R<self.N: R=2*R+1 vv=self.f(self.segment_tree[R],v) if f(vv): v=vv R-=1 return R+1-self.N def __str__(self): return "["+", ".join(map(str,self.segment_tree[self.N:]))+"]" def Swap_Count(N,A,B): if sorted(A)==sorted(B): idxA={tpl:i for i,tpl in enumerate(sorted([(A[i],i) for i in range(N)]))} idxB={tpl:i for i,tpl in enumerate(sorted([(B[i],i) for i in range(N)]))} for i in range(N): A[i]=idxA[(A[i],i)] B[i]=idxB[(B[i],i)] idx={A[i]:i for i in range(N)} for i in range(N): B[i]=idx[B[i]] retu=Inversion_Number(B) else: retu=-1 return retu class BinaryIndexedTree(): def __init__(self, seq): self.size = len(seq) self.depth = self.size.bit_length() self.build(seq) def build(self, seq): data = seq size = self.size for i, x in enumerate(data): j = i + (i & (-i)) if j < size: data[j] += data[i] self.data = data def get_sum(self, i): data = self.data s = 0 while i: s += data[i] i -= i & -i return s def add(self, i, x): data = self.data size = self.size while i < size: data[i] += x i += i & -i def Inversion(seq): N = len(seq) bit = BinaryIndexedTree([0] * (N + 1)) inv = N * (N - 1) // 2 for x in seq: inv -= bit.get_sum(x) bit.add(x, 1) return inv N=int(readline()) A=[int(readline()) for i in range(N)] comp,decomp=Compress(A) le=len(comp) for i in range(N): A[i]=comp[A[i]] del comp,decomp ans=Inversion([a+1 for a in A]) C=[0]*(le+1) for a in A: C[a+1]+=1 for i in range(1,le+1): C[i]+=C[i-1] for a in A: print(ans) ans-=C[a] ans+=(C[le]-C[a+1])