結果
問題 | No.2556 Increasing Matrix |
ユーザー |
|
提出日時 | 2023-12-02 00:44:54 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 676 ms / 6,000 ms |
コード長 | 41,852 bytes |
コンパイル時間 | 3,395 ms |
コンパイル使用メモリ | 161,552 KB |
最終ジャッジ日時 | 2025-02-18 03:07:56 |
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 22 |
ソースコード
#include <iostream>#include <vector>#include <atcoder/modint>using mint = atcoder::modint998244353;#include <deque>#include <vector>namespace suisen {template <typename FPSType, typename T>std::vector<typename FPSType::value_type> multi_point_eval(const FPSType& f, const std::vector<T>& xs) {using mint = typename FPSType::value_type;int n = xs.size();if (n == 0) return {};std::vector<mint> ys(n);if (f.size() <= 20) {for (int i = 0; i < n; ++i) ys[i] = f.eval(xs[i]);return ys;}std::vector<FPSType> seg(2 * n);for (int i = 0; i < n; ++i) seg[n + i] = FPSType{ -xs[i], 1 };for (int i = n - 1; i > 0; --i) seg[i] = seg[i * 2] * seg[i * 2 + 1];seg[1] = f % seg[1];for (int i = 2; i < 2 * n; ++i) seg[i] = seg[i / 2] % seg[i];for (int i = 0; i < n; ++i) ys[i] = seg[n + i].size() ? seg[n + i][0] : 0;return ys;}} // namespace suisennamespace suisen {/*** O(N(logN)^2)* return the vector p of length xs.size() s.t. p[i]=Π[j!=i](x[i]-x[j])*/template <typename FPSType, typename T>std::vector<typename FPSType::value_type> product_of_differences(const std::vector<T>& xs) {// f(x):=Π_i(x-x[i])// => f'(x)=Σ_i Π[j!=i](x-x[j])// => f'(x[i])=Π[j!=i](x[i]-x[j])const int n = xs.size();std::deque<FPSType> dq;for (int i = 0; i < n; ++i) dq.push_back(FPSType{ -xs[i], 1 });while (dq.size() >= 2) {auto f = std::move(dq.front());dq.pop_front();auto g = std::move(dq.front());dq.pop_front();dq.push_back(f * g);}auto f = std::move(dq.front());f.diff_inplace();return multi_point_eval<FPSType, T>(f, xs);}} // namespace suisen#include <limits>#include <optional>#include <queue>#include <atcoder/modint>#include <atcoder/convolution>#include <cassert>#include <cmath>#include <type_traits>#include <iostream>namespace suisen {template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>;template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; };template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std::make_unsigned_t<T>>::digits; };template <typename T> static constexpr int bitnum_v = bitnum<T>::value;template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; };template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value;template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; };template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; };template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; };template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; };template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; };template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type;template <typename T, typename = void> struct rec_value_type { using type = T; };template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> {using type = typename rec_value_type<typename T::value_type>::type;};template <typename T> using rec_value_type_t = typename rec_value_type<T>::type;template <typename T> class is_iterable {template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{});static std::false_type test(...);public:static constexpr bool value = decltype(test(std::declval<T>()))::value;};template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value;template <typename T> class is_writable {template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{});static std::false_type test(...);public:static constexpr bool value = decltype(test(std::declval<T>()))::value;};template <typename T> static constexpr bool is_writable_v = is_writable<T>::value;template <typename T> class is_readable {template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{});static std::false_type test(...);public:static constexpr bool value = decltype(test(std::declval<T>()))::value;};template <typename T> static constexpr bool is_readable_v = is_readable<T>::value;} // namespace suisen/*** refernce: https://37zigen.com/tonelli-shanks-algorithm/* calculates x s.t. x^2 = a mod p in O((log p)^2).*/template <typename mint>std::optional<mint> safe_sqrt(mint a) {static int p = mint::mod();if (a == 0) return std::make_optional(0);if (p == 2) return std::make_optional(a);if (a.pow((p - 1) / 2) != 1) return std::nullopt;mint b = 1;while (b.pow((p - 1) / 2) == 1) ++b;static int tlz = __builtin_ctz(p - 1), q = (p - 1) >> tlz;mint x = a.pow((q + 1) / 2);b = b.pow(q);for (int shift = 2; x * x != a; ++shift) {mint e = a.inv() * x * x;if (e.pow(1 << (tlz - shift)) != 1) x *= b;b *= b;}return std::make_optional(x);}/*** calculates x s.t. x^2 = a mod p in O((log p)^2).* if not exists, raises runtime error.*/template <typename mint>auto sqrt(mint a) -> decltype(mint::mod(), mint()) {return *safe_sqrt(a);}template <typename mint>auto log(mint a) -> decltype(mint::mod(), mint()) {assert(a == 1);return 0;}template <typename mint>auto exp(mint a) -> decltype(mint::mod(), mint()) {assert(a == 0);return 1;}template <typename mint, typename T>auto pow(mint a, T b) -> decltype(mint::mod(), mint()) {return a.pow(b);}template <typename mint>auto inv(mint a) -> decltype(mint::mod(), mint()) {return a.inv();}namespace suisen {template <typename mint>class inv_mods {public:inv_mods() = default;inv_mods(int n) { ensure(n); }const mint& operator[](int i) const {ensure(i);return invs[i];}static void ensure(int n) {int sz = invs.size();if (sz < 2) invs = { 0, 1 }, sz = 2;if (sz < n + 1) {invs.resize(n + 1);for (int i = sz; i <= n; ++i) invs[i] = mint(mod - mod / i) * invs[mod % i];}}private:static std::vector<mint> invs;static constexpr int mod = mint::mod();};template <typename mint>std::vector<mint> inv_mods<mint>::invs{};template <typename mint>std::vector<mint> get_invs(const std::vector<mint>& vs) {const int n = vs.size();mint p = 1;for (auto& e : vs) {p *= e;assert(e != 0);}mint ip = p.inv();std::vector<mint> rp(n + 1);rp[n] = 1;for (int i = n - 1; i >= 0; --i) {rp[i] = rp[i + 1] * vs[i];}std::vector<mint> res(n);for (int i = 0; i < n; ++i) {res[i] = ip * rp[i + 1];ip *= vs[i];}return res;}}namespace suisen {template <typename T>struct FPSNaive : std::vector<T> {static inline int MAX_SIZE = std::numeric_limits<int>::max() / 2;using value_type = T;using element_type = rec_value_type_t<T>;using std::vector<value_type>::vector;FPSNaive(const std::initializer_list<value_type> l) : std::vector<value_type>::vector(l) {}FPSNaive(const std::vector<value_type>& v) : std::vector<value_type>::vector(v) {}static void set_max_size(int n) {FPSNaive<T>::MAX_SIZE = n;}const value_type operator[](int n) const {return n <= deg() ? unsafe_get(n) : value_type{ 0 };}value_type& operator[](int n) {return ensure_deg(n), unsafe_get(n);}int size() const {return std::vector<value_type>::size();}int deg() const {return size() - 1;}int normalize() {while (size() and this->back() == value_type{ 0 }) this->pop_back();return deg();}FPSNaive& cut_inplace(int n) {if (size() > n) this->resize(std::max(0, n));return *this;}FPSNaive cut(int n) const {FPSNaive f = FPSNaive(*this).cut_inplace(n);return f;}FPSNaive operator+() const {return FPSNaive(*this);}FPSNaive operator-() const {FPSNaive f(*this);for (auto& e : f) e = -e;return f;}FPSNaive& operator++() { return ++(*this)[0], * this; }FPSNaive& operator--() { return --(*this)[0], * this; }FPSNaive& operator+=(const value_type x) { return (*this)[0] += x, *this; }FPSNaive& operator-=(const value_type x) { return (*this)[0] -= x, *this; }FPSNaive& operator+=(const FPSNaive& g) {ensure_deg(g.deg());for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i);return *this;}FPSNaive& operator-=(const FPSNaive& g) {ensure_deg(g.deg());for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i);return *this;}FPSNaive& operator*=(const FPSNaive& g) { return *this = *this * g; }FPSNaive& operator*=(const value_type x) {for (auto& e : *this) e *= x;return *this;}FPSNaive& operator/=(const FPSNaive& g) { return *this = *this / g; }FPSNaive& operator%=(const FPSNaive& g) { return *this = *this % g; }FPSNaive& operator<<=(const int shamt) {this->insert(this->begin(), shamt, value_type{ 0 });return *this;}FPSNaive& operator>>=(const int shamt) {if (shamt > size()) this->clear();else this->erase(this->begin(), this->begin() + shamt);return *this;}friend FPSNaive operator+(FPSNaive f, const FPSNaive& g) { f += g; return f; }friend FPSNaive operator+(FPSNaive f, const value_type& x) { f += x; return f; }friend FPSNaive operator-(FPSNaive f, const FPSNaive& g) { f -= g; return f; }friend FPSNaive operator-(FPSNaive f, const value_type& x) { f -= x; return f; }friend FPSNaive operator*(const FPSNaive& f, const FPSNaive& g) {if (f.empty() or g.empty()) return FPSNaive{};const int n = f.size(), m = g.size();FPSNaive h(std::min(MAX_SIZE, n + m - 1));for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) {if (i + j >= MAX_SIZE) break;h.unsafe_get(i + j) += f.unsafe_get(i) * g.unsafe_get(j);}return h;}friend FPSNaive operator*(FPSNaive f, const value_type& x) { f *= x; return f; }friend FPSNaive operator/(FPSNaive f, const FPSNaive& g) { return std::move(f.div_mod(g).first); }friend FPSNaive operator%(FPSNaive f, const FPSNaive& g) { return std::move(f.div_mod(g).second); }friend FPSNaive operator*(const value_type x, FPSNaive f) { f *= x; return f; }friend FPSNaive operator<<(FPSNaive f, const int shamt) { f <<= shamt; return f; }friend FPSNaive operator>>(FPSNaive f, const int shamt) { f >>= shamt; return f; }std::pair<FPSNaive, FPSNaive> div_mod(FPSNaive g) const {FPSNaive f = *this;const int fd = f.normalize(), gd = g.normalize();assert(gd >= 0);if (fd < gd) return { FPSNaive{}, f };if (gd == 0) return { f *= g.unsafe_get(0).inv(), FPSNaive{} };const int k = f.deg() - gd;value_type head_inv = g.unsafe_get(gd).inv();FPSNaive q(k + 1);for (int i = k; i >= 0; --i) {value_type div = f.unsafe_get(i + gd) * head_inv;q.unsafe_get(i) = div;for (int j = 0; j <= gd; ++j) f.unsafe_get(i + j) -= div * g.unsafe_get(j);}f.cut_inplace(gd);f.normalize();return { q, f };}friend bool operator==(const FPSNaive& f, const FPSNaive& g) {const int n = f.size(), m = g.size();if (n < m) return g == f;for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false;for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false;return true;}friend bool operator!=(const FPSNaive& f, const FPSNaive& g) {return not (f == g);}FPSNaive mul(const FPSNaive& g, int n = -1) const {if (n < 0) n = size();if (this->empty() or g.empty()) return FPSNaive{};const int m = size(), k = g.size();FPSNaive h(std::min(n, m + k - 1));for (int i = 0; i < m; ++i) {for (int j = 0, jr = std::min(k, n - i); j < jr; ++j) {h.unsafe_get(i + j) += unsafe_get(i) * g.unsafe_get(j);}}return h;}FPSNaive diff() const {if (this->empty()) return {};FPSNaive g(size() - 1);for (int i = 1; i <= deg(); ++i) g.unsafe_get(i - 1) = unsafe_get(i) * i;return g;}FPSNaive intg() const {const int n = size();FPSNaive g(n + 1);for (int i = 0; i < n; ++i) g.unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1];if (g.deg() > MAX_SIZE) g.cut_inplace(MAX_SIZE);return g;}FPSNaive inv(int n = -1) const {if (n < 0) n = size();FPSNaive g(n);const value_type inv_f0 = ::inv(unsafe_get(0));g.unsafe_get(0) = inv_f0;for (int i = 1; i < n; ++i) {for (int j = 1; j <= i; ++j) g.unsafe_get(i) -= g.unsafe_get(i - j) * (*this)[j];g.unsafe_get(i) *= inv_f0;}return g;}FPSNaive exp(int n = -1) const {if (n < 0) n = size();assert(unsafe_get(0) == value_type{ 0 });FPSNaive g(n);g.unsafe_get(0) = value_type{ 1 };for (int i = 1; i < n; ++i) {for (int j = 1; j <= i; ++j) g.unsafe_get(i) += j * g.unsafe_get(i - j) * (*this)[j];g.unsafe_get(i) *= invs[i];}return g;}FPSNaive log(int n = -1) const {if (n < 0) n = size();assert(unsafe_get(0) == value_type{ 1 });FPSNaive g(n);g.unsafe_get(0) = value_type{ 0 };for (int i = 1; i < n; ++i) {g.unsafe_get(i) = i * (*this)[i];for (int j = 1; j < i; ++j) g.unsafe_get(i) -= (i - j) * g.unsafe_get(i - j) * (*this)[j];g.unsafe_get(i) *= invs[i];}return g;}FPSNaive pow(const long long k, int n = -1) const {if (n < 0) n = size();if (k == 0) {FPSNaive res(n);res[0] = 1;return res;}int z = 0;while (z < size() and unsafe_get(z) == value_type{ 0 }) ++z;if (z == size() or z > (n - 1) / k) return FPSNaive(n, 0);const int m = n - z * k;FPSNaive g(m);const value_type inv_f0 = ::inv(unsafe_get(z));g.unsafe_get(0) = unsafe_get(z).pow(k);for (int i = 1; i < m; ++i) {for (int j = 1; j <= i; ++j) g.unsafe_get(i) += (element_type{ k } *j - (i - j)) * g.unsafe_get(i - j) * (*this)[z + j];g.unsafe_get(i) *= inv_f0 * invs[i];}g <<= z * k;return g;}std::optional<FPSNaive> safe_sqrt(int n = -1) const {if (n < 0) n = size();int dl = 0;while (dl < size() and unsafe_get(dl) == value_type{ 0 }) ++dl;if (dl == size()) return FPSNaive(n, 0);if (dl & 1) return std::nullopt;const int m = n - dl / 2;FPSNaive g(m);auto opt_g0 = ::safe_sqrt((*this)[dl]);if (not opt_g0.has_value()) return std::nullopt;g.unsafe_get(0) = *opt_g0;value_type inv_2g0 = ::inv(2 * g.unsafe_get(0));for (int i = 1; i < m; ++i) {g.unsafe_get(i) = (*this)[dl + i];for (int j = 1; j < i; ++j) g.unsafe_get(i) -= g.unsafe_get(j) * g.unsafe_get(i - j);g.unsafe_get(i) *= inv_2g0;}g <<= dl / 2;return g;}FPSNaive sqrt(int n = -1) const {if (n < 0) n = size();return *safe_sqrt(n);}value_type eval(value_type x) const {value_type y = 0;for (int i = size() - 1; i >= 0; --i) y = y * x + unsafe_get(i);return y;}private:static inline inv_mods<element_type> invs;void ensure_deg(int d) {if (deg() < d) this->resize(d + 1, value_type{ 0 });}const value_type& unsafe_get(int i) const {return std::vector<value_type>::operator[](i);}value_type& unsafe_get(int i) {return std::vector<value_type>::operator[](i);}};} // namespace suisentemplate <typename mint>suisen::FPSNaive<mint> sqrt(suisen::FPSNaive<mint> a) {return a.sqrt();}template <typename mint>suisen::FPSNaive<mint> log(suisen::FPSNaive<mint> a) {return a.log();}template <typename mint>suisen::FPSNaive<mint> exp(suisen::FPSNaive<mint> a) {return a.exp();}template <typename mint, typename T>suisen::FPSNaive<mint> pow(suisen::FPSNaive<mint> a, T b) {return a.pow(b);}template <typename mint>suisen::FPSNaive<mint> inv(suisen::FPSNaive<mint> a) {return a.inv();}namespace suisen {template <typename mint, atcoder::internal::is_static_modint_t<mint>* = nullptr>struct FormalPowerSeries : std::vector<mint> {using base_type = std::vector<mint>;using value_type = typename base_type::value_type;using base_type::vector;FormalPowerSeries(const std::initializer_list<value_type> l) : std::vector<value_type>::vector(l) {}FormalPowerSeries(const std::vector<value_type>& v) : std::vector<value_type>::vector(v) {}int size() const noexcept {return base_type::size();}int deg() const noexcept {return size() - 1;}void ensure(int n) {if (size() < n) this->resize(n);}value_type safe_get(int d) const {return d <= deg() ? (*this)[d] : 0;}value_type& safe_get(int d) {ensure(d + 1);return (*this)[d];}FormalPowerSeries& cut_trailing_zeros() {while (size() and this->back() == 0) this->pop_back();return *this;}FormalPowerSeries& cut(int n) {if (size() > n) this->resize(std::max(0, n));return *this;}FormalPowerSeries cut_copy(int n) const {FormalPowerSeries res(this->begin(), this->begin() + std::min(size(), n));res.ensure(n);return res;}FormalPowerSeries cut_copy(int l, int r) const {if (l >= size()) return FormalPowerSeries(r - l, 0);FormalPowerSeries res(this->begin() + l, this->begin() + std::min(size(), r));res.ensure(r - l);return res;}/* Unary Operations */FormalPowerSeries operator+() const { return *this; }FormalPowerSeries operator-() const {FormalPowerSeries res = *this;for (auto& e : res) e = -e;return res;}FormalPowerSeries& operator++() { return ++safe_get(0), * this; }FormalPowerSeries& operator--() { return --safe_get(0), * this; }FormalPowerSeries operator++(int) {FormalPowerSeries res = *this;++(*this);return res;}FormalPowerSeries operator--(int) {FormalPowerSeries res = *this;--(*this);return res;}/* Binary Operations With Constant */FormalPowerSeries& operator+=(const value_type& x) { return safe_get(0) += x, *this; }FormalPowerSeries& operator-=(const value_type& x) { return safe_get(0) -= x, *this; }FormalPowerSeries& operator*=(const value_type& x) {for (auto& e : *this) e *= x;return *this;}FormalPowerSeries& operator/=(const value_type& x) { return *this *= x.inv(); }friend FormalPowerSeries operator+(FormalPowerSeries f, const value_type& x) { f += x; return f; }friend FormalPowerSeries operator+(const value_type& x, FormalPowerSeries f) { f += x; return f; }friend FormalPowerSeries operator-(FormalPowerSeries f, const value_type& x) { f -= x; return f; }friend FormalPowerSeries operator-(const value_type& x, FormalPowerSeries f) { f -= x; return -f; }friend FormalPowerSeries operator*(FormalPowerSeries f, const value_type& x) { f *= x; return f; }friend FormalPowerSeries operator*(const value_type& x, FormalPowerSeries f) { f *= x; return f; }friend FormalPowerSeries operator/(FormalPowerSeries f, const value_type& x) { f /= x; return f; }/* Binary Operations With Formal Power Series */FormalPowerSeries& operator+=(const FormalPowerSeries& g) {const int n = g.size();ensure(n);for (int i = 0; i < n; ++i) (*this)[i] += g[i];return *this;}FormalPowerSeries& operator-=(const FormalPowerSeries& g) {const int n = g.size();ensure(n);for (int i = 0; i < n; ++i) (*this)[i] -= g[i];return *this;}FormalPowerSeries& operator*=(const FormalPowerSeries& g) { return *this = *this * g; }FormalPowerSeries& operator/=(const FormalPowerSeries& g) { return *this = *this / g; }FormalPowerSeries& operator%=(const FormalPowerSeries& g) { return *this = *this % g; }friend FormalPowerSeries operator+(FormalPowerSeries f, const FormalPowerSeries& g) { f += g; return f; }friend FormalPowerSeries operator-(FormalPowerSeries f, const FormalPowerSeries& g) { f -= g; return f; }friend FormalPowerSeries operator*(const FormalPowerSeries& f, const FormalPowerSeries& g) {const int siz_f = f.size(), siz_g = g.size();if (siz_f < siz_g) return g * f;if (std::min(siz_f, siz_g) <= 60) return atcoder::convolution(f, g);const int deg = siz_f + siz_g - 2;int fpow2 = 1;while ((fpow2 << 1) <= deg) fpow2 <<= 1;if (const int dif = deg - fpow2 + 1; dif <= 10) {FormalPowerSeries h = atcoder::convolution(std::vector<mint>(f.begin(), f.end() - dif), g);h.resize(h.size() + dif);for (int i = siz_f - dif; i < siz_f; ++i) for (int j = 0; j < siz_g; ++j) {h[i + j] += f[i] * g[j];}return h;}return atcoder::convolution(f, g);}friend FormalPowerSeries operator/(FormalPowerSeries f, FormalPowerSeries g) {if (f.size() < 60) return FPSNaive<mint>(f).div_mod(g).first;f.cut_trailing_zeros(), g.cut_trailing_zeros();const int fd = f.deg(), gd = g.deg();assert(gd >= 0);if (fd < gd) return {};if (gd == 0) {f /= g[0];return f;}std::reverse(f.begin(), f.end()), std::reverse(g.begin(), g.end());const int qd = fd - gd;f.cut(qd + 1);FormalPowerSeries q = f * g.inv(qd + 1);q.cut(qd + 1);std::reverse(q.begin(), q.end());return q;}friend FormalPowerSeries operator%(const FormalPowerSeries& f, const FormalPowerSeries& g) { return f.div_mod(g).second; }std::pair<FormalPowerSeries, FormalPowerSeries> div_mod(const FormalPowerSeries& g) const {if (size() < 60) {auto [q, r] = FPSNaive<mint>(*this).div_mod(g);return { q, r };}FormalPowerSeries q = *this / g, r = *this - g * q;r.cut_trailing_zeros();return { q, r };}/* Shift Operations */FormalPowerSeries& operator<<=(const int shamt) {return this->insert(this->begin(), shamt, 0), * this;}FormalPowerSeries& operator>>=(const int shamt) {return this->erase(this->begin(), this->begin() + std::min(shamt, size())), * this;}friend FormalPowerSeries operator<<(FormalPowerSeries f, const int shamt) { f <<= shamt; return f; }friend FormalPowerSeries operator>>(FormalPowerSeries f, const int shamt) { f >>= shamt; return f; }/* Compare */friend bool operator==(const FormalPowerSeries& f, const FormalPowerSeries& g) {const int n = f.size(), m = g.size();if (n < m) return g == f;for (int i = 0; i < m; ++i) if (f[i] != g[i]) return false;for (int i = m; i < n; ++i) if (f[i] != 0) return false;return true;}friend bool operator!=(const FormalPowerSeries& f, const FormalPowerSeries& g) { return not (f == g); }/* Other Operations */FormalPowerSeries& diff_inplace() {if (this->empty()) return *this;const int n = size();for (int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i;return (*this)[n - 1] = 0, *this;}FormalPowerSeries diff() const {FormalPowerSeries res = *this;res.diff_inplace();return res;}FormalPowerSeries& intg_inplace() {const int n = size();inv_mods<value_type> invs(n);this->resize(n + 1);for (int i = n; i > 0; --i) (*this)[i] = (*this)[i - 1] * invs[i];return (*this)[0] = 0, *this;}FormalPowerSeries intg() const {FormalPowerSeries res = *this;res.intg_inplace();return res;}FormalPowerSeries& inv_inplace(int n = -1) { return *this = inv(n); }// reference: https://opt-cp.com/fps-fast-algorithms/FormalPowerSeries inv(int n = -1) const {if (n < 0) n = size();if (n < 60) return FPSNaive<mint>(cut_copy(n)).inv();if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return inv_sparse(std::move(*sp_f), n);FormalPowerSeries f_fft, g_fft;FormalPowerSeries g{ (*this)[0].inv() };for (int k = 1; k < n; k *= 2) {f_fft = cut_copy(2 * k), g_fft = g.cut_copy(2 * k);atcoder::internal::butterfly(f_fft);atcoder::internal::butterfly(g_fft);update_inv(k, f_fft, g_fft, g);}g.resize(n);return g;}FormalPowerSeries& log_inplace(int n = -1) { return *this = log(n); }FormalPowerSeries log(int n = -1) const {assert(safe_get(0) == 1);if (n < 0) n = size();if (n < 60) return FPSNaive<mint>(cut_copy(n)).log();if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return log_sparse(std::move(*sp_f), n);FormalPowerSeries res = inv(n) * diff();res.resize(n - 1);return res.intg();}FormalPowerSeries& exp_inplace(int n = -1) { return *this = exp(n); }// https://arxiv.org/pdf/1301.5804.pdfFormalPowerSeries exp(int n = -1) const {assert(safe_get(0) == 0);if (n < 0) n = size();if (n < 60) return FPSNaive<mint>(cut_copy(n)).exp();if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return exp_sparse(std::move(*sp_f), n);// h = *this// f = exp(h) mod x ^ k// g = f^{-1} mod x ^ kFormalPowerSeries dh = diff();FormalPowerSeries f{ 1 }, f_fft;FormalPowerSeries g{ 1 }, g_fft;for (int k = 1; k < n; k *= 2) {f_fft = f.cut_copy(2 * k), atcoder::internal::butterfly(f_fft);if (k > 1) update_inv(k / 2, f_fft, g_fft, g);FormalPowerSeries t = f.cut_copy(k);t.diff_inplace();{FormalPowerSeries r = dh.cut_copy(k);r.back() = 0;atcoder::internal::butterfly(r);for (int i = 0; i < k; ++i) r[i] *= f_fft[i];atcoder::internal::butterfly_inv(r);r /= -k;t += r;t <<= 1, t[0] = t[k], t.pop_back();}t.resize(2 * k);atcoder::internal::butterfly(t);g_fft = g.cut_copy(2 * k);atcoder::internal::butterfly(g_fft);for (int i = 0; i < 2 * k; ++i) t[i] *= g_fft[i];atcoder::internal::butterfly_inv(t);t.resize(k);t /= 2 * k;FormalPowerSeries v = cut_copy(2 * k) >>= k;t <<= k - 1;t.intg_inplace();for (int i = 0; i < k; ++i) v[i] -= t[k + i];v.resize(2 * k);atcoder::internal::butterfly(v);for (int i = 0; i < 2 * k; ++i) v[i] *= f_fft[i];atcoder::internal::butterfly_inv(v);v.resize(k);v /= 2 * k;f.resize(2 * k);for (int i = 0; i < k; ++i) f[k + i] = v[i];}f.cut(n);return f;}FormalPowerSeries& pow_inplace(long long k, int n = -1) { return *this = pow(k, n); }FormalPowerSeries pow(const long long k, int n = -1) const {if (n < 0) n = size();if (n < 60) return FPSNaive<mint>(cut_copy(n)).pow(k);if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return pow_sparse(std::move(*sp_f), k, n);if (k == 0) {FormalPowerSeries f{ 1 };f.resize(n);return f;}int tlz = 0;while (tlz < size() and (*this)[tlz] == 0) ++tlz;if (tlz == size() or tlz > (n - 1) / k) return FormalPowerSeries(n, 0);const int m = n - tlz * k;FormalPowerSeries f = *this >> tlz;value_type base = f[0];return ((((f /= base).log(m) *= k).exp(m) *= base.pow(k)) <<= (tlz * k));}std::optional<FormalPowerSeries> safe_sqrt(int n = -1) const {if (n < 0) n = size();if (n < 60) return FPSNaive<mint>(cut_copy(n)).safe_sqrt();if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return safe_sqrt_sparse(std::move(*sp_f), n);int tlz = 0;while (tlz < size() and (*this)[tlz] == 0) ++tlz;if (tlz == size()) return FormalPowerSeries(n, 0);if (tlz & 1) return std::nullopt;const int m = n - tlz / 2;FormalPowerSeries h(this->begin() + tlz, this->end());auto q0 = ::safe_sqrt(h[0]);if (not q0.has_value()) return std::nullopt;FormalPowerSeries f{ *q0 }, f_fft, g{ q0->inv() }, g_fft;for (int k = 1; k < m; k *= 2) {f_fft = f.cut_copy(2 * k), atcoder::internal::butterfly(f_fft);if (k > 1) update_inv(k / 2, f_fft, g_fft, g);g_fft = g.cut_copy(2 * k);atcoder::internal::butterfly(g_fft);FormalPowerSeries h_fft = h.cut_copy(2 * k);atcoder::internal::butterfly(h_fft);for (int i = 0; i < 2 * k; ++i) h_fft[i] = (h_fft[i] - f_fft[i] * f_fft[i]) * g_fft[i];atcoder::internal::butterfly_inv(h_fft);f.resize(2 * k);const value_type iz = value_type(4 * k).inv();for (int i = 0; i < k; ++i) f[k + i] = h_fft[k + i] * iz;}f.resize(m), f <<= (tlz / 2);return f;}FormalPowerSeries& sqrt_inplace(int n = -1) { return *this = sqrt(n); }FormalPowerSeries sqrt(int n = -1) const {return *safe_sqrt(n);}value_type eval(value_type x) const {value_type y = 0;for (int i = size() - 1; i >= 0; --i) y = y * x + (*this)[i];return y;}static FormalPowerSeries prod(const std::vector<FormalPowerSeries>& fs) {if (fs.empty()) return { 1 };std::deque<FormalPowerSeries> dq(fs.begin(), fs.end());std::sort(dq.begin(), dq.end(), [](auto& f, auto& g) { return f.size() < g.size(); });while (dq.size() >= 2) {dq.push_back(dq[0] * dq[1]);dq.pop_front();dq.pop_front();}return dq.front();}std::optional<std::vector<std::pair<int, value_type>>> sparse_fps_format(int max_size) const {std::vector<std::pair<int, value_type>> res;for (int i = 0; i <= deg() and int(res.size()) <= max_size; ++i) if (value_type v = (*this)[i]; v != 0) res.emplace_back(i, v);if (int(res.size()) > max_size) return std::nullopt;return res;}private:static void update_inv(const int k, FormalPowerSeries& f_fft, FormalPowerSeries& g_fft, FormalPowerSeries& g) {FormalPowerSeries fg(2 * k);for (int i = 0; i < 2 * k; ++i) fg[i] = f_fft[i] * g_fft[i];atcoder::internal::butterfly_inv(fg);fg >>= k, fg.resize(2 * k);atcoder::internal::butterfly(fg);for (int i = 0; i < 2 * k; ++i) fg[i] *= g_fft[i];atcoder::internal::butterfly_inv(fg);const value_type iz = value_type(2 * k).inv(), c = -iz * iz;g.resize(2 * k);for (int i = 0; i < k; ++i) g[k + i] = fg[i] * c;}static FormalPowerSeries div_fps_sparse(const FormalPowerSeries& f, const std::vector<std::pair<int, value_type>>& g, int n) {const int siz = g.size();assert(siz and g[0].first == 0);const value_type inv_g0 = g[0].second.inv();FormalPowerSeries h(n);for (int i = 0; i < n; ++i) {value_type v = f.safe_get(i);for (int idx = 1; idx < siz; ++idx) {const auto& [j, gj] = g[idx];if (j > i) break;v -= gj * h[i - j];}h[i] = v * inv_g0;}return h;}static FormalPowerSeries inv_sparse(const std::vector<std::pair<int, value_type>>& g, const int n) {return div_fps_sparse(FormalPowerSeries{ 1 }, g, n);}static FormalPowerSeries exp_sparse(const std::vector<std::pair<int, value_type>>& f, const int n) {const int siz = f.size();assert(not siz or f[0].first != 0);FormalPowerSeries g(n);g[0] = 1;inv_mods<value_type> invs(n);for (int i = 1; i < n; ++i) {value_type v = 0;for (const auto& [j, fj] : f) {if (j > i) break;v += j * fj * g[i - j];}v *= invs[i];g[i] = v;}return g;}static FormalPowerSeries log_sparse(const std::vector<std::pair<int, value_type>>& f, const int n) {const int siz = f.size();assert(siz and f[0].first == 0 and f[0].second == 1);FormalPowerSeries g(n);for (int idx = 1; idx < siz; ++idx) {const auto& [j, fj] = f[idx];if (j >= n) break;g[j] = j * fj;}inv_mods<value_type> invs(n);for (int i = 1; i < n; ++i) {value_type v = g[i];for (int idx = 1; idx < siz; ++idx) {const auto& [j, fj] = f[idx];if (j > i) break;v -= fj * g[i - j] * (i - j);}v *= invs[i];g[i] = v;}return g;}static FormalPowerSeries pow_sparse(const std::vector<std::pair<int, value_type>>& f, const long long k, const int n) {if (k == 0) {FormalPowerSeries res(n, 0);res[0] = 1;return res;}const int siz = f.size();if (not siz) return FormalPowerSeries(n, 0);const int p = f[0].first;if (p > (n - 1) / k) return FormalPowerSeries(n, 0);const value_type inv_f0 = f[0].second.inv();const int lz = p * k;FormalPowerSeries g(n);g[lz] = f[0].second.pow(k);inv_mods<value_type> invs(n);for (int i = 1; lz + i < n; ++i) {value_type v = 0;for (int idx = 1; idx < siz; ++idx) {auto [j, fj] = f[idx];j -= p;if (j > i) break;v += fj * g[lz + i - j] * (value_type(k) * j - (i - j));}v *= invs[i] * inv_f0;g[lz + i] = v;}return g;}static std::optional<FormalPowerSeries> safe_sqrt_sparse(const std::vector<std::pair<int, value_type>>& f, const int n) {const int siz = f.size();if (not siz) return FormalPowerSeries(n, 0);const int p = f[0].first;if (p % 2 == 1) return std::nullopt;if (p / 2 >= n) return FormalPowerSeries(n, 0);const value_type inv_f0 = f[0].second.inv();const int lz = p / 2;FormalPowerSeries g(n);auto opt_g0 = ::safe_sqrt(f[0].second);if (not opt_g0.has_value()) return std::nullopt;g[lz] = *opt_g0;value_type k = mint(2).inv();inv_mods<value_type> invs(n);for (int i = 1; lz + i < n; ++i) {value_type v = 0;for (int idx = 1; idx < siz; ++idx) {auto [j, fj] = f[idx];j -= p;if (j > i) break;v += fj * g[lz + i - j] * (k * j - (i - j));}v *= invs[i] * inv_f0;g[lz + i] = v;}return g;}static FormalPowerSeries sqrt_sparse(const std::vector<std::pair<int, value_type>>& f, const int n) {return *safe_sqrt(f, n);}};} // namespace suisentemplate <typename mint>suisen::FormalPowerSeries<mint> sqrt(suisen::FormalPowerSeries<mint> a) {return a.sqrt();}template <typename mint>suisen::FormalPowerSeries<mint> log(suisen::FormalPowerSeries<mint> a) {return a.log();}template <typename mint>suisen::FormalPowerSeries<mint> exp(suisen::FormalPowerSeries<mint> a) {return a.exp();}template <typename mint, typename T>suisen::FormalPowerSeries<mint> pow(suisen::FormalPowerSeries<mint> a, T b) {return a.pow(b);}template <typename mint>suisen::FormalPowerSeries<mint> inv(suisen::FormalPowerSeries<mint> a) {return a.inv();}int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);int n;std::cin >> n;--n;std::vector<int> d(n);{int p;std::cin >> p;for (int i = 0; i < n; ++i) {int v;std::cin >> v;d[i] = v - p + 1;p = v;}}std::vector<mint> sd(n + 1);for (int i = 0; i < n; ++i) {sd[i + 1] = sd[i] + d[i];}auto res = suisen::product_of_differences<suisen::FormalPowerSeries<mint>>(sd);mint ans = mint(-1).pow(1LL * (n + 1) * n / 2);for (mint e : res) {ans *= e;}mint fac = 1, facfac = 1;for (int i = 1; i <= n; ++i) {fac *= i;facfac *= fac;}std::cout << (ans / facfac.pow(2)).val() << std::endl;}