結果
問題 | No.502 階乗を計算するだけ |
ユーザー | miscalc |
提出日時 | 2023-12-02 04:01:20 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 71 ms / 1,000 ms |
コード長 | 50,107 bytes |
コンパイル時間 | 4,690 ms |
コンパイル使用メモリ | 267,260 KB |
実行使用メモリ | 9,548 KB |
最終ジャッジ日時 | 2024-09-26 16:23:04 |
合計ジャッジ時間 | 10,098 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 52 |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using ull = unsigned long long; using pll = pair<ll, ll>; using tlll = tuple<ll, ll, ll>; constexpr ll INF = 1LL << 60; template<class T> bool chmin(T& a, T b) {if (a > b) {a = b; return true;} return false;} template<class T> bool chmax(T& a, T b) {if (a < b) {a = b; return true;} return false;} ll safemod(ll A, ll M) {ll res = A % M; if (res < 0) res += M; return res;} ll divfloor(ll A, ll B) {if (B < 0) A = -A, B = -B; return (A - safemod(A, B)) / B;} ll divceil(ll A, ll B) {if (B < 0) A = -A, B = -B; return divfloor(A + B - 1, B);} ll pow_ll(ll A, ll B) {if (A == 0 || A == 1) {return A;} if (A == -1) {return B & 1 ? -1 : 1;} ll res = 1; for (int i = 0; i < B; i++) {res *= A;} return res;} ll mul_limited(ll A, ll B, ll M = INF) { return B == 0 ? 0 : A > M / B ? M : A * B; } ll pow_limited(ll A, ll B, ll M = INF) { if (A == 0 || A == 1) {return A;} ll res = 1; for (int i = 0; i < B; i++) {if (res > M / A) return M; res *= A;} return res;} template<class T> void unique(vector<T> &V) {V.erase(unique(V.begin(), V.end()), V.end());} template<class T> void sortunique(vector<T> &V) {sort(V.begin(), V.end()); V.erase(unique(V.begin(), V.end()), V.end());} #define FINALANS(A) do {cout << (A) << '\n'; exit(0);} while (false) template<class T> void printvec(const vector<T> &V) {int _n = V.size(); for (int i = 0; i < _n; i++) cout << V[i] << (i == _n - 1 ? "" : " ");cout << '\n';} template<class T> void printvect(const vector<T> &V) {for (auto v : V) cout << v << '\n';} template<class T> void printvec2(const vector<vector<T>> &V) {for (auto &v : V) printvec(v);} //* #include <atcoder/modint> #include <atcoder/math> #include <atcoder/convolution> #include <atcoder/internal_math> using namespace atcoder; //*/ // http://drken1215.hatenablog.com/entry/2018/06/08/210000 template <class T> class binom { public: vector<T> fac, finv, inv; binom(int M) { fac.resize(M + 1); finv.resize(M + 1); inv.resize(M + 1); //* fac[0] = T(1); for (int i = 1; i <= M; i++) fac[i] = fac[i - 1] * T::raw(i); finv[M] = fac[M].inv(); for (int i = M - 1; i >= 0; i--) finv[i] = finv[i + 1] * T::raw(i + 1); for (int i = 1; i <= M; i++) inv[i] = fac[i - 1] * finv[i]; //*/ /* fac[0] = T(1), finv[0] = T(1); fac[1] = T(1), finv[1] = T(1), inv[1] = T(1); for (int i = 2; i <= M; i++) { fac[i] = fac[i - 1] * i; inv[i] = -inv[T::mod() % i] * (T::mod() / i); finv[i] = finv[i - 1] * inv[i]; } //*/ } T P(int N, int K) { if (N < K) return 0; if (N < 0 || K < 0) return 0; return fac[N] * finv[N - K]; } T C(int N, int K) { if (N < K) return 0; if (N < 0 || K < 0) return 0; return fac[N] * finv[K] * finv[N - K]; } T H(int N, int K) { if (N == 0 && K == 0) return 1; return C(N + K - 1, K); } }; // http://drken1215.hatenablog.com/entry/2018/06/08/210000 template <class T> class binom_mut { private: vector<T> fac, finv, inv; void calc(int n) { int i = fac.size(); if (n < i) return; fac.resize(n + 1), finv.resize(n + 1), inv.resize(n + 1); for (; i <= n; i++) { fac[i] = fac[i - 1] * i; inv[i] = -inv[T::mod() % i] * (T::mod() / i); finv[i] = finv[i - 1] * inv[i]; } } public: binom_mut() { fac = {1, 1}, finv = {1, 1}, inv = {0, 1}; } T get_fac(int n) { assert(n >= 0); calc(n); return fac[n]; } T get_finv(int n) { assert(n >= 0); calc(n); return finv[n]; } T get_inv(int n) { assert(n > 0); calc(n); return inv[n]; } T P(int N, int K) { if (N < K) return 0; if (N < 0 || K < 0) return 0; calc(N); return fac[N] * finv[N - K]; } T C(int N, int K) { if (N < K) return 0; if (N < 0 || K < 0) return 0; calc(N); return fac[N] * finv[K] * finv[N - K]; } T H(int N, int K) { if (N == 0 && K == 0) return 1; return C(N + K - 1, K); } }; // https://qiita.com/taiyaki8926/items/f62f534d43ff006129f7 ll sqrt_mod(ll n, int p) // p は素数 { n %= p; if (n == 0) return 0; if (p == 2) return n; if (pow_mod(n, (p - 1) / 2, p) == p - 1) // 平方非剰余 return -1; if (p % 4 == 3) return pow_mod(n, (p + 1) / 4, p); internal::barrett ba(p); int q = p - 1, s = 0; while (q % 2 == 0) q /= 2, s++; int z = 2; while (pow_mod(z, (p - 1) / 2, p) != p - 1) z++; int m = s; ll c = pow_mod(z, q, p); ll t = pow_mod(n, q, p); ll r = pow_mod(n, (q + 1) / 2, p); while (t != 1) { int m2 = 1; for (ll tmp = ba.mul(t, t); tmp != 1; tmp = ba.mul(tmp, tmp), m2++); ll b = pow_mod(c, 1 << (m - m2 - 1), p); m = m2, c = ba.mul(b, b), t = ba.mul(t, c), r = ba.mul(r, b); } return r; } template<const int MOD = 1000000007, class T> vector<T> convolution_anymod(const vector<T> &A, const vector<T> &B) { int N = A.size(), M = B.size(); if (min(N, M) <= 300) { using mint = static_modint<MOD>; vector<mint> A2(N), B2(M); for (int i = 0; i < N; i++) A2[i] = A[i]; for (int j = 0; j < M; j++) B2[j] = B[j]; vector<mint> C2(N + M - 1, 0); for (int i = 0; i < N; i++) for (int j = 0; j < M; j++) C2[i + j] += A2[i] * B2[j]; vector<T> C(N + M - 1); for (int i = 0; i < N + M - 1; i++) C[i] = C2[i].val(); return C; } constexpr ll MOD1 = 167772161, MOD2 = 469762049, MOD3 = 1224736769; using mint2 = static_modint<MOD2>; using mint3 = static_modint<MOD3>; using mint4 = static_modint<MOD>; constexpr int i1_2 = internal::inv_gcd(MOD1, MOD2).second; constexpr int i12_3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; constexpr int m12_4 = MOD1 * MOD2 % MOD; auto C1 = convolution<MOD1>(A, B); auto C2 = convolution<MOD2>(A, B); auto C3 = convolution<MOD3>(A, B); vector<T> C(N + M - 1); for (ll i = 0; i < N + M - 1; i++) { int c1 = C1[i], c2 = C2[i], c3 = C3[i]; int t1 = (mint2(c2 - c1) * mint2::raw(i1_2)).val(); mint3 x2_m3 = mint3::raw(c1) + mint3::raw(t1) * mint3::raw(MOD1); mint4 x2_m = mint4::raw(c1) + mint4::raw(t1) * mint4::raw(MOD1); int t2 = ((mint3::raw(c3) - x2_m3) * mint3::raw(i12_3)).val(); C[i] = (x2_m + mint4::raw(t2) * mint4::raw(m12_4)).val(); } return C; } template<class T> vector<T> convolution_anymod(const vector<T> &A, const vector<T> &B, const int MOD) { int N = A.size(), M = B.size(); if (min(N, M) <= 300) { using mint = dynamic_modint<100>; mint::set_mod(MOD); vector<mint> A2(N), B2(M); for (int i = 0; i < N; i++) A2[i] = A[i]; for (int j = 0; j < M; j++) B2[j] = B[j]; vector<mint> C2(N + M - 1, 0); for (int i = 0; i < N; i++) for (int j = 0; j < M; j++) C2[i + j] += A2[i] * B2[j]; vector<T> C(N + M - 1); for (int i = 0; i < N + M - 1; i++) C[i] = C2[i].val(); return C; } constexpr ll MOD1 = 167772161, MOD2 = 469762049, MOD3 = 1224736769; using mint2 = static_modint<MOD2>; using mint3 = static_modint<MOD3>; using mint4 = dynamic_modint<100>; mint4::set_mod(MOD); constexpr int i1_2 = internal::inv_gcd(MOD1, MOD2).second; constexpr int i12_3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto C1 = convolution<MOD1>(A, B); auto C2 = convolution<MOD2>(A, B); auto C3 = convolution<MOD3>(A, B); vector<T> C(N + M - 1); for (ll i = 0; i < N + M - 1; i++) { int c1 = C1[i], c2 = C2[i], c3 = C3[i]; int t1 = (mint2(c2 - c1) * mint2::raw(i1_2)).val(); mint3 x2_m3 = mint3::raw(c1) + mint3::raw(t1) * mint3::raw(MOD1); mint4 x2_m = mint4::raw(c1) + mint4::raw(t1) * mint4::raw(MOD1); int t2 = ((mint3::raw(c3) - x2_m3) * mint3::raw(i12_3)).val(); C[i] = (x2_m + mint4::raw(t2) * mint4::raw(MOD1) * mint4::raw(MOD2)).val(); } return C; } template<const int MOD> vector<static_modint<MOD>> convolution_anymod(const vector<static_modint<MOD>> &A, const vector<static_modint<MOD>> &B) { int N = A.size(), M = B.size(); vector<int> A2(N), B2(M); for (int i = 0; i < N; i++) A2[i] = A[i].val(); for (int i = 0; i < M; i++) B2[i] = B[i].val(); vector<int> C2 = convolution_anymod<MOD>(A2, B2); vector<static_modint<MOD>> C(N + M - 1); for (int i = 0; i < N + M - 1; i++) C[i] = static_modint<MOD>::raw(C2[i]); return C; } template<const int id> vector<dynamic_modint<id>> convolution_anymod(const vector<dynamic_modint<id>> &A, const vector<dynamic_modint<id>> &B) { int N = A.size(), M = B.size(); vector<int> A2(N), B2(M); for (int i = 0; i < N; i++) A2[i] = A[i].val(); for (int i = 0; i < M; i++) B2[i] = B[i].val(); vector<int> C2 = convolution_anymod(A2, B2, dynamic_modint<id>::mod()); vector<dynamic_modint<id>> C(N + M - 1); for (int i = 0; i < N + M - 1; i++) C[i] = dynamic_modint<id>::raw(C2[i]); return C; } template<class T1> struct LagrangeInterpolation { int D; vector<T1> Y, fac, finv, prodl, prodr; template<class T2> LagrangeInterpolation(const vector<T2> &y) { D = (int)y.size() - 1; Y.resize(D + 1); for (int i = 0; i <= D; i++) { Y[i] = y[i]; } fac.resize(D + 1), finv.resize(D + 1); fac[0] = 1; for (int i = 1; i <= D; i++) fac[i] = fac[i - 1] * i; finv[D] = fac[D].inv(); for (int i = D - 1; i >= 0; i--) finv[i] = finv[i + 1] * (i + 1); prodl.resize(D + 2), prodr.resize(D + 2); } T1 eval(T1 x) { prodl[0] = 1; for (int i = 0; i <= D; i++) { prodl[i + 1] = prodl[i] * (x - i); } prodr[D + 1] = 1; for (int i = D; i >= 0; i--) { prodr[i] = prodr[i + 1] * (x - i); } T1 res = 0; for (int i = 0; i <= D; i++) { T1 tmp = Y[i] * prodl[i] * prodr[i + 1] * finv[i] * finv[D - i]; if ((D - i) % 2 == 0) res += tmp; else res -= tmp; } return res; } }; // https://opt-cp.com/fps-implementation/ // https://qiita.com/hotman78/items/f0e6d2265badd84d429a // https://opt-cp.com/fps-fast-algorithms/ // https://maspypy.com/%E5%A4%9A%E9%A0%85%E5%BC%8F%E3%83%BB%E5%BD%A2%E5%BC%8F%E7%9A%84%E3%81%B9%E3%81%8D%E7%B4%9A%E6%95%B0-%E9%AB%98%E9%80%9F%E3%81%AB%E8%A8%88%E7%AE%97%E3%81%A7%E3%81%8D%E3%82%8B%E3%82%82%E3%81%AE template<class T, bool is_ntt_friendly> struct FormalPowerSeries : vector<T> { private: static vector<T> fac, finv, invmint; void calc(int n) { while ((int)fac.size() <= n) { int i = fac.size(); fac.emplace_back(fac[i - 1] * i); invmint.emplace_back(-invmint[T::mod() % i] * (T::mod() / i)); finv.emplace_back(finv[i - 1] * invmint[i]); } } public: T get_fac(int n) { calc(n); return fac[n]; } T get_finv(int n) { calc(n); return finv[n]; } T get_invmint(int n) { calc(n); return invmint[n]; } using vector<T>::vector; using vector<T>::operator=; using F = FormalPowerSeries; using S = vector<pair<ll, T>>; FormalPowerSeries(const S &f, int n = -1) { if (n == -1) n = f.back().first + 1; (*this).assign(n, T(0)); for (auto [d, a] : f) (*this)[d] += a; } F operator-() const { F res(*this); for (auto &a : res) a = -a; return res; } F operator*=(const T &k) { for (auto &a : *this) a *= k; return *this; } F operator*(const T &k) const { return F(*this) *= k; } friend F operator*(const T k, const F &f) { return f * k; } F operator/=(const T &k) { *this *= k.inv(); return *this; } F operator/(const T &k) const { return F(*this) /= k; } F &operator+=(const F &g) { int n = (*this).size(), m = g.size(); (*this).resize(max(n, m), T(0)); for (int i = 0; i < m; i++) (*this)[i] += g[i]; return *this; } F operator+(const F &g) const { return F(*this) += g; } F &operator-=(const F &g) { int n = (*this).size(), m = g.size(); (*this).resize(max(n, m), T(0)); for (int i = 0; i < m; i++) (*this)[i] -= g[i]; return *this; } F operator-(const F &g) const { return F(*this) -= g; } F &operator<<=(const ll d) { int n = (*this).size(); (*this).insert((*this).begin(), min(ll(n), d), T(0)); (*this).resize(n); return *this; } F operator<<(const ll d) const { return F(*this) <<= d; } F &operator>>=(const ll d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + min(ll(n), d)); (*this).resize(n, T(0)); return *this; } F operator>>(const ll d) const { return F(*this) >>= d; } F &operator*=(const S &g) { int n = (*this).size(); auto [d, c] = g.front(); if (d != 0) c = 0; for (int i = n - 1; i >= 0; i--) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j == 0) continue; if (j > i) break; (*this)[i] += (*this)[i - j] * b; } } return *this; } F operator*(const S &g) const { return F(*this) *= g; } F &operator/=(const S &g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T inv_c = c.inv(); for (int i = 0; i < n; i++) { for (auto &[j, b] : g) { if (j == 0) continue; if (j > i) break; (*this)[i] -= (*this)[i - j] * b; } (*this)[i] *= inv_c; } return *this; } F operator/(const S &g) const { return F(*this) /= g; } // (1 + cx^d) を掛ける F multiply(const int d, const T c) { int n = (*this).size(); if (c == T(1)) { for (int i = n - 1 - d; i >= 0; i--) (*this)[i + d] += (*this)[i]; } else if (c == T(-1)) { for (int i = n - 1 - d; i >= 0; i--) (*this)[i + d] -= (*this)[i]; } else { for (int i = n - 1 - d; i >= 0; i--) (*this)[i + d] += (*this)[i] * c; } return *this; } F multiplication(const int d, const T c) const { return multiply(F(*this)); } // (1 + cx^d) で割る F divide(const int d, const T c) { int n = (*this).size(); if (c == T(1)) { for (int i = 0; i < n - d; i++) (*this)[i + d] -= (*this)[i]; } else if (c == T(-1)) { for (int i = 0; i < n - d; i++) (*this)[i + d] += (*this)[i]; } else { for (int i = 0; i < n - d; i++) (*this)[i + d] -= (*this)[i] * c; } return *this; } F division(const int d, const T c) const { return divide(F(*this)); } template<const int MOD> F convolution2(const vector<static_modint<MOD>> &A, const vector<static_modint<MOD>> &B, const int d = -1) const { F res; if (is_ntt_friendly) res = convolution(A, B); else res = convolution_anymod(A, B); if (d != -1 && (int)res.size() > d) res.resize(d); return res; } template<const int id> F convolution2(const vector<dynamic_modint<id>> &A, const vector<dynamic_modint<id>> &B, const int d = -1) const { F res; res = convolution_anymod(A, B); if (d != -1 && (int)res.size() > d) res.resize(d); return res; } F &operator*=(const F &g) { int n = (*this).size(); if (n == 0) return *this; *this = convolution2(*this, g, n); return *this; } F operator*(const F &g) const { return F(*this) *= g; } template <const int MOD> void butterfly2(FormalPowerSeries<static_modint<MOD>, true> &A) const { internal::butterfly(A); } template <const int MOD> void butterfly2(FormalPowerSeries<static_modint<MOD>, false> &A) const { assert(false); } template <const int id> void butterfly2(FormalPowerSeries<dynamic_modint<id>, false> &A) const { assert(false); } template <const int MOD> void butterfly_inv2(FormalPowerSeries<static_modint<MOD>, true> &A) const { internal::butterfly_inv(A); } template <const int MOD> void butterfly_inv2(FormalPowerSeries<static_modint<MOD>, false> &A) const { assert(false); } template <const int id> void butterfly_inv2(FormalPowerSeries<dynamic_modint<id>, false> &A) const { assert(false); } // mod (x^n - 1) をとったものを返す F circular_mod(int n) const { F res(n, T(0)); for (int i = 0; i < (int)(*this).size(); i++) res[i % n] += (*this)[i]; return res; } F inv(int d = -1) const { int n = (*this).size(); assert(!(*this).empty() && (*this).at(0) != T(0)); if (d == -1) d = n; //assert(d > 0); F f, g2; F g{(*this).front().inv()}; while ((int)g.size() < d) { if (is_ntt_friendly) { int m = g.size(); f = F{(*this).begin(), (*this).begin() + min(n, 2 * m)}; g2 = F(g); f.resize(2 * m, T(0)), butterfly2(f); g2.resize(2 * m, T(0)), butterfly2(g2); for (int i = 0; i < 2 * m; i++) f[i] *= g2[i]; butterfly_inv2(f); f.erase(f.begin(), f.begin() + m); f.resize(2 * m, T(0)), butterfly2(f); for (int i = 0; i < 2 * m; i++) f[i] *= g2[i]; butterfly_inv2(f); T iz = T(2 * m).inv(); iz *= -iz; for (int i = 0; i < m; i++) f[i] *= iz; g.insert(g.end(), f.begin(), f.begin() + m); } else { g.resize(2 * g.size(), T(0)); g *= F{T(2)} - g * (*this); } } return {g.begin(), g.begin() + d}; } F &operator/=(const F &g) { *this *= g.inv((*this).size()); return *this; } F operator/(const F &g) const { return F(*this) *= g.inv((*this).size()); } F differentiate() { *this >>= 1; for (int i = 0; i < int((*this).size()) - 1; i++) (*this)[i] *= i + 1; return *this; } F differential() const { return F(*this).differentiate(); } F integrate() { int n = (*this).size(); vector<T> minv(n); minv[1] = T(1); *this <<= 1; for (int i = 2; i < n; i++) { minv[i] = -minv[T::mod() % i] * (T::mod() / i); (*this)[i] *= minv[i]; } return *this; } F integral() const { return F(*this).integrate(); } F log() const { assert((*this).front() == T(1)); return ((*this).differential() / (*this)).integral(); } F exp() const // https://arxiv.org/pdf/1301.5804.pdf { int n = (*this).size(); assert(n != 0 && (*this).front() == T(0)); //* if (is_ntt_friendly) { F f{T(1)}, g{T(1)}; F dh = (*this).differential(); F f2, g2, f3, q, s, h, u; g2 = {T(0)}; while ((int)f.size() < n) { int m = f.size(); T im = T(m).inv(), i2m = T(2 * m).inv(); f2 = F(f); f2.resize(2 * m), butterfly2(f2); // a F f3(f); butterfly2(f3); for (int i = 0; i < m; i++) f3[i] *= g2[i]; butterfly_inv2(f3); f3.erase(f3.begin(), f3.begin() + m / 2); f3.resize(m, T(0)), butterfly2(f3); for (int i = 0; i < m; i++) f3[i] *= g2[i]; butterfly_inv2(f3); for (int i = 0; i < m / 2; i++) f3[i] *= -im * im; g.insert(g.end(), f3.begin(), f3.begin() + m / 2); g2 = F(g), g2.resize(2 * m), butterfly2(g2); // b, c q = F(dh); q.resize(2 * m); for (int i = m - 1; i < 2 * m; i++) q[i] = T(0); butterfly2(q); for (int i = 0; i < 2 * m; i++) q[i] *= f2[i]; butterfly_inv2(q); q = q.circular_mod(m); for (int i = 0; i < m; i++) q[i] *= i2m; // d, e q.resize(m + 1); s = ((f.differential() - q) << 1).circular_mod(m); s.resize(2 * m); butterfly2(s); for (int i = 0; i < 2 * m; i++) s[i] *= g2[i]; butterfly_inv2(s); for (int i = 0; i < m; i++) s[i] *= i2m; s.resize(m); // f, g h = (*this); h.resize(2 * m), s.resize(2 * m); u = (h - (s << (m - 1)).integral()) >> m; butterfly2(u); for (int i = 0; i < 2 * m; i++) u[i] *= f2[i]; butterfly_inv2(u); for (int i = 0; i < m; i++) u[i] *= i2m; u.resize(m); // h f.insert(f.end(), u.begin(), u.end()); } return {f.begin(), f.begin() + n}; } else //*/ { F f{T(1)}, g{T(1)}; while ((int)f.size() < n) { int m = f.size(); g = convolution2(g, F{T(2)} - f * g, m); F q = (*this).differential(); q.resize(m - 1); F r = f.convolution2(f, q).circular_mod(m); r.resize(m + 1); F s = ((f.differential() - r) << 1).circular_mod(m); F t = g * s; F h = (*this); h.resize(2 * m), t.resize(2 * m); F u = (h - (t << (m - 1)).integral()) >> m; F v = f * u; f.insert(f.end(), v.begin(), v.end()); } return {f.begin(), f.begin() + n}; /* F f{T(1)}; while ((int)f.size() < n) { int m = f.size(); f.resize(min(n, 2 * m), T(0)); f *= (*this) + F{T(1)} - f.log(); } return f; //*/ } } F pow(const ll k) const { if (k == 0) { F res((*this).size(), T(0)); res[0] = T(1); return res; } int n = (*this).size(), d; for (d = 0; d < n; d++) { if ((*this)[d] != T(0)) break; } if (d == n) return F(n, 0); F res = F(*this) >> d; T c = res[0]; res /= c; res = (res.log() * T(k)).exp(); res *= c.pow(k), res <<= (d != 0 && k > n ? n : d * k); return res; } F powmod(ll k, const F &g) const { F res(2 * g.size(), 0); res.front() = 1; F tmp = (*this) % g; tmp.resize(g.size()); while (k > 0) { if (k & 1) { res *= tmp; res %= g; res.resize(2 * g.size()); } tmp = tmp.convolution2(tmp, tmp); tmp %= g; tmp.resize(g.size()); k >>= 1; } return res; } // f(x)^k mod (x^n - 1) F powmod_circular(ll k, ll n) const { F res(n, 0); res.front() = 1; F tmp = (*this).circular_mod(n); while (k > 0) { if (k & 1) res = res.convolution2(res, tmp).circular_mod(n); tmp = tmp.convolution2(tmp, tmp).circular_mod(n); k >>= 1; } return res; } // 素数 mod を要求 // 存在しないなら空配列を返す F sqrt() const { int n = (*this).size(), d; for (d = 0; d < n; d += 2) { if ((*this)[d] != 0) break; if (d + 1 < n && (*this)[d + 1] != 0) return F(0); } if (d >= n) return F(n, 0); T a = (*this)[d]; int p = T::mod(); int r = sqrt_mod(a.val(), p); if (r == -1) return F(0); T inv_2 = T(2).inv(); F f = F(*this) >> d, res = F{r}; while (res.size() < f.size()) { res.resize(min(f.size(), 2 * res.size()), T(0)); res = (res + res.inv() * f) * inv_2; } res <<= d / 2; return res; } F div_poly(const F &g) const { F f2 = F(*this), g2 = F(g); while (!f2.empty() && f2.back() == T(0)) f2.pop_back(); while (!g2.empty() && g2.back() == T(0)) g2.pop_back(); int n = f2.size(), m = g2.size(); int k = n - m + 1; if (k <= 0) return F{}; reverse(f2.begin(), f2.end()); reverse(g2.begin(), g2.end()); f2.resize(k, T(0)), g2.resize(k, T(0)); F q = f2 / g2; reverse(q.begin(), q.end()); while (!q.empty() && q.back() == T(0)) q.pop_back(); return q; } pair<F, F> divmod(const F &g) const { int m = g.size(); assert(m != 0); F q = (*this).div_poly(g); F f3 = F(*this), g3 = F(g), q3 = F(q); f3.resize(m - 1, T(0)), g3.resize(m - 1, T(0)), q3.resize(m - 1, T(0)); F r = f3 - q3 * g3; while (!r.empty() && r.back() == T(0)) r.pop_back(); return make_pair(q, r); } F operator%(const F &g) const { return (*this).divmod(g).second; } F &operator%=(const F &g) { return (*this) = (*this) % g; } F div_poly(const S &g) const { F f2 = F(*this); while (!f2.empty() && f2.back() == T(0)) f2.pop_back(); assert(!g.empty()); int n = f2.size(), m = g.back().first + 1; int k = n - m + 1; if (k <= 0) return F{}; reverse(f2.begin(), f2.end()); S g2(g.size()); for (int i = 0; i < (int)g.size(); i++) g2[(int)g.size() - 1 - i] = make_pair(m - 1 - g[i].first, g[i].second); f2.resize(k, T(0)); F q = f2 / g2; reverse(q.begin(), q.end()); while (!q.empty() && q.back() == T(0)) q.pop_back(); return q; } pair<F, F> divmod(const S &g) const { assert(!g.empty()); int m = g.back().first + 1; F q = (*this).div_poly(g); F f3 = F(*this), q3 = F(q); f3.resize(m - 1, T(0)), q3.resize(m - 1, T(0)); F r = f3 - q3 * g; while (!r.empty() && r.back() == T(0)) r.pop_back(); return make_pair(q, r); } F operator%(const S &g) const { return (*this).divmod(g).second; } F &operator%=(const S &g) { return (*this) = (*this) % g; } T eval(const T &x) const { T res(0); for (int i = (int)(*this).size() - 1; i >= 0; i--) { res *= x; res += (*this)[i]; } return res; } // 各係数 a_n を n! で割る F to_egf() { for (int i = 0; i < (int)(*this).size(); i++) (*this)[i] *= get_finv(i); return (*this); } // 各係数 a_n を n! で割ったものを返す F get_egf() const { return F(*this).to_egf(); } // 各係数 a_n に n! をかける F to_ogf() { for (int i = 0; i < (int)(*this).size(); i++) (*this)[i] *= get_fac(i); return (*this); } // 各係数 a_n に n! をかけたものを返す F get_ogf() const { return F(*this).to_ogf(); } F taylor_shift(const T &c) const { int n = (*this).size(); F f = F(*this).get_ogf(); reverse(f.begin(), f.end()); F g = F(n); g[0] = 1; for (int i = 1; i < n; i++) g[i] = c * g[i - 1]; g.to_egf(); F h = f * g; reverse(h.begin(), h.end()); return h.to_egf(); } vector<T> eval_multipoint(const vector<T> &xs) const { int m0 = xs.size(), m = 1; while (m < m0) m <<= 1; vector<F> node(2 * m, F{1}); for (int i = 0; i < m0; i++) node[m + i] = {-xs[i], T(1)}; for (int i = m - 1; i > 0; i--) node[i] = convolution2(node[i << 1], node[(i << 1) | 1]); node[1] = (*this).divmod(node[1]).second; for (int i = 2; i < m + m0; i++) node[i] = node[i >> 1].divmod(node[i]).second; vector<T> res(m0); for (int i = 0; i < m0; i++) res[i] = node[m + i].empty() ? T(0) : node[m + i][0]; return res; } // i = 0..m-1 に対する f(ar^i) // https://noshi91.github.io/algorithm-encyclopedia/chirp-z-transform vector<T> eval_multipoint_geo(int m, T a, T r) const { if (r == 0) { vector<T> res(m, (*this).eval(0)); res.front() = (*this).eval(a); return res; } auto calc_pw = [&](T x, int k) -> vector<T> { vector<T> res(k); res.front() = 1; for (int i = 1; i < k; i++) res[i] = res[i - 1] * x; return res; }; auto get_pw_tri = [&](const vector<T> &pw, int i) -> T { if (i == 0) return 1; return i % 2 == 0 ? pw[i - 1].pow(i / 2) : pw[i].pow((i - 1) / 2); }; int n = (*this).size(); T invr = r.inv(); vector<T> pwa = calc_pw(a, n), pwr = calc_pw(r, n + m), pwir = calc_pw(invr, max(n, m)); vector<T> s(n), t(n + m); for (int i = 0; i < n; i++) s[n - 1 - i] = (*this)[i] * pwa[i] * get_pw_tri(pwir, i); for (int i = 0; i < n + m; i++) t[i] = get_pw_tri(pwr, i); vector<T> u = convolution2(s, t, n + m - 1); u.erase(u.begin(), u.begin() + n - 1); for (int i = 0; i < m; i++) u[i] *= get_pw_tri(pwir, i); return u; } }; // (次数, 係数) を昇順に並べたもの template <class T, bool is_ntt_friendly> struct SparseFormalPowerSeries : vector<pair<ll, T>> { using vector<pair<ll, T>>::vector; using vector<pair<ll, T>>::operator=; using F = FormalPowerSeries<T, is_ntt_friendly>; using S = SparseFormalPowerSeries; F to_fps(int n) const { F res(n, T(0)); for (auto [d, a] : (*this)) res[d] += a; return res; } SparseFormalPowerSeries(const F &f) { (*this).clear(); for (int i = 0; i < (int)f.size(); i++) { if (f[i] != T(0)) (*this).emplace_back(make_pair(i, f[i])); } } S operator-() const { S res(*this); for (auto &[d, a] : res) a = -a; return res; } S operator*=(const T &k) { for (auto &[d, a] : (*this)) a *= k; return (*this); } S operator/=(const T &k) { (*this) *= k.inv(); return (*this); } S operator*(const T &k) const { return S(*this) *= k; } S operator/(const T &k) const { return S(*this) /= k; } friend S operator*(const T k, const S &f) { return f * k; } S operator+(const S &g) const { S res; int n = (*this).size(), m = g.size(), i = 0, j = 0; while (i < n || j < m) { pair<ll, T> tmp; if (j == m || (i != n && (*this)[i].first <= g[j].first)) tmp = (*this)[i++]; else tmp = g[j++]; if (!res.empty() && res.back().first == tmp.first) res.back().second += tmp.second; else res.emplace_back(tmp); } return res; } S operator-(const S &g) const { S res; int n = (*this).size(), m = g.size(), i = 0, j = 0; while (i < n || j < m) { pair<ll, T> tmp; if (j == m || (i != n && (*this)[i].first <= g[j].first)) tmp = (*this)[i++]; else { tmp = g[j++]; tmp.second = -tmp.second; } if (!res.empty() && res.back().first == tmp.first) res.back().second += tmp.second; else res.emplace_back(tmp); } return res; } S operator*(const S &g) const { S res; for (auto [d, a] : (*this)) for (auto [e, b] : g) res.emplace_back(make_pair(d + e, a * b)); sort(res.begin(), res.end(), [&](pair<ll, T> p1, pair<ll, T> p2) { return p1.first < p2.first; }); S res2; for (auto da : res) { auto [d, a] = da; if (res2.empty() || res2.back().first != d) res2.emplace_back(da); else res2.back().second += a; } return res2; } S operator+=(const S &g) { return (*this) = (*this) + g; } S operator-=(const S &g) { return (*this) = (*this) - g; } S operator*=(const S &g) { return (*this) = (*this) * g; } S operator<<=(ll k) { for (auto &[d, a] : (*this)) d += k; return (*this); } S operator<<(ll k) const { return (*this) <<= k; } S operator>>(ll k) const { S res; for (auto [d, a] : (*this)) { d -= k; if (d >= 0) res.emplace_back(make_pair(d, a)); } return res; } S operator>>=(ll k) { return (*this) = (*this) >> k; } F inv(int n) const { F f(n, T(0)); f.front() = T(1); return f / (*this); } S differentiate() { for (auto &[d, a] : (*this)) a *= d--; if (!(*this).empty() && (*this).front().first == -1) (*this).erase((*this).begin()); return (*this); } S differential() const { return S(*this).differentiate(); } S integrate() { for (auto &[d, a] : (*this)) a /= T(++d); return (*this); } S integral() const { return S(*this).integrate(); } F log(int n) const { F f = (*this).to_fps(n); return (f.differential() / (*this)).integral(); } // 微分方程式 a(x)F'(x) + b(x)F(x) = 0, [x^0]F(x) = 1 を満たす F を n 項まで求める // [x^0]a(x) = 1 である必要がある F diffeq(const S &a, const S &b, int n) const { assert(a.front().first == 0 && a.front().second == 1); vector<T> minv(n); minv[1] = T(1); for (int i = 2; i < n; i++) minv[i] = -minv[T::mod() % i] * (T::mod() / i); F f(n, T(0)); f[0] = T(1); for (int k = 0; k < n - 1; k++) { for (auto [i, ai] : a) { if (0 <= k - i + 1 && k - i + 1 < k + 1) f[k + 1] -= ai * (k - i + 1) * f[k - i + 1]; } for (auto [j, bj] : b) { if (0 <= k - j && k - j < k + 1) f[k + 1] -= bj * f[k - j]; } f[k + 1] *= minv[k + 1]; } return f; } F exp(int n) const { return diffeq(S{{0, 1}}, -((*this).differential()), n); } // m >= 0 のときは O(nk) (k: sparse の non-zero の個数) // m < 0 のときは O((n + d_0 m)k) F pow(ll m, int n) const { S f(*this); if (f.empty()) { F res(n, T(0)); if (m == 0) res.front() = T(1); return res; } auto [d0, a0] = f.front(); T a0_inv = a0.inv(); for (auto &[d, a] : f) d -= d0, a *= a0_inv; if (m >= 0) { F g = diffeq(f, -m * f.differential(), n); return (g * a0.pow(m)) << mul_limited(d0, m); } else { F g = diffeq(f, -m * f.differential(), n + (d0 * (-m))); F h = (g * a0_inv.pow(-m)) >> (d0 * (-m)); h.resize(n); return h; } } // 素数 mod を要求 // 存在しないなら空配列を返す F sqrt(int n) const { S f(*this); if (f.empty()) return F(n, T(0)); auto [d0, a0] = f.front(); if (d0 % 2 != 0) return F(0); if (d0 >= n) return F(n, T(0)); int p = T::mod(); int r = sqrt_mod(a0.val(), p); if (r == -1) return F(0); T a0_inv = a0.inv(); T inv_2 = T(2).inv(); for (auto &[d, a] : f) d -= d0, a *= a0_inv; F g = diffeq(f, -inv_2 * f.differential(), n); return ((g * r) << (d0 / 2)); } }; template <class T, bool is_ntt_friendly> vector<T> FormalPowerSeries<T, is_ntt_friendly>::fac{1, 1}; template <class T, bool is_ntt_friendly> vector<T> FormalPowerSeries<T, is_ntt_friendly>::finv{1, 1}; template<class T, bool is_ntt_friendly> vector<T> FormalPowerSeries<T, is_ntt_friendly>::invmint{0, 1}; template<class T, bool is_ntt_friendly> struct RationalFormalPowerSeries { using F = FormalPowerSeries<T, is_ntt_friendly>; using R = RationalFormalPowerSeries; F num, den; R operator-() const { R res(*this); res.num = -res.num; return res; } R operator*=(const T &k) { (*this).num *= k; return *this; } R operator*(const T &k) const { return R(*this) *= k; } friend R operator*(const T k, const R &r) { return r * k; } R operator/=(const T &k) { (*this).den *= k; return k; } R operator/(const T &k) const { return R(*this) /= k; } R &operator+=(const R &r) { // ここうまくやると FFT の回数が節約できる気がする // うまくやらないと次数に偏りがある場合にかえって遅くなったりしそうで面倒 F f, g; f = f.convolution2((*this).num, r.den); g = g.convolution2((*this).den, r.num); (*this).num = f + g; (*this).den = (*this).den.convolution2((*this).den, r.den); return *this; } R operator+(const R &r) const { return R(*this) += r; } R &operator-=(const R &r) { F f, g; f = f.convolution2((*this).num, r.den); g = g.convolution2((*this).den, r.num); (*this).num = f - g; (*this).den = (*this).den.convolution2((*this).den, r.den); return *this; } R operator-(const R &r) const { return R(*this) -= r; } R operator*=(const R &r) { (*this).num = (*this).num.convolution2((*this).num, r.num); (*this).den = (*this).den.convolution2((*this).den, r.den); return *this; } R operator*(const R &r) const { return R(*this) *= r; } R operator/=(const R &r) { (*this).num = (*this).num.convolution2((*this).num, r.den); (*this).den = (*this).den.convolution2((*this).den, r.num); return *this; } R operator/(const R &r) const { return R(*this) /= r; } R inv() { R res(*this); swap(res.num, res.den); return res; } }; template <class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> convolution_many(const vector<FormalPowerSeries<T, is_ntt_friendly>> &fs, int d = -1) { using F = FormalPowerSeries<T, is_ntt_friendly>; if (fs.empty()) { if (d == -1) d = 0; F res(d + 1, T(0)); res.front() = T(1); return res; } deque<F> deq; for (auto f : fs) deq.push_back(f); while ((int)deq.size() > 1) { F f = deq.front(); deq.pop_front(); F g = deq.front(); deq.pop_front(); f = f.convolution2(f, g, d); deq.push_back(f); } if (d != -1) deq.front().resize(d); return deq.front(); } template <class T, bool is_ntt_friendly> RationalFormalPowerSeries<T, is_ntt_friendly> rational_sum(const vector<RationalFormalPowerSeries<T, is_ntt_friendly>> &rs, int d = -1) { using R = RationalFormalPowerSeries<T, is_ntt_friendly>; if (rs.empty()) return R{{1}, {1}}; deque<R> deq; for (auto &r : rs) deq.emplace_back(r); while ((int)deq.size() > 1) { R r1 = deq.front(); deq.pop_front(); R r2 = deq.front(); deq.pop_front(); R r3 = r1 + r2; if (d != -1) { if ((int)r3.num.size() > d) r3.num.resize(d); if ((int)r3.den.size() > d) r3.den.resize(d); } deq.emplace_back(r3); } if (d != -1) deq.front().num.resize(d), deq.front().den.resize(d); return deq.front(); } template <class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> interpolation(const vector<T> &xs, const vector<T> &ys) { using F = FormalPowerSeries<T, is_ntt_friendly>; using R = RationalFormalPowerSeries<T, is_ntt_friendly>; int n = xs.size(); assert(n == ys.size()); vector<F> fs(n); for (int i = 0; i < n; i++) fs[i] = F{-xs[i], T(1)}; F g = convolution_many(fs); F h = g.differential(); vector<T> a = h.eval_multipoint(xs); vector<R> rs(n); for (int i = 0; i < n; i++) rs[i] = R{F{ys[i] / a[i]}, fs[i]}; R q = rational_sum(rs, n); return q.num; } // f(i) = ys[i] で定まる多項式 f(x) について f(c), …, f(c + M - 1) を求める template<class T, bool is_ntt_friendly> vector<T> sample_points_shift(const vector<T> &ys, int M, T c) { using F = FormalPowerSeries<T, is_ntt_friendly>; F f; int N = ys.size(); vector<T> a; { vector<T> p(N), q(N); for (int i = 0; i < N; i++) { p[i] = ys[i] * f.get_finv(i); q[i] = i % 2 == 0 ? f.get_finv(i) : -f.get_finv(i); } a = f.convolution2(p, q); a.resize(N); } vector<T> b; { vector<T> p(N), q(N); T tmp = 1; for (int i = 0; i < N; i++) { p[i] = a[i] * f.get_fac(i); q[i] = tmp * f.get_finv(i); tmp *= c - i; } reverse(q.begin(), q.end()); b = f.convolution2(p, q); b.erase(b.begin(), b.begin() + N - 1); for (int i = 0; i < N; i++) b[i] *= f.get_finv(i); } vector<T> res; { vector<T> p(M); for (int i = 0; i < M; i++) p[i] = f.get_finv(i); res = f.convolution2(b, p); res.resize(M); for (int i = 0; i < M; i++) res[i] *= f.get_fac(i); } return res; } // https://suisen-kyopro.hatenablog.com/entry/2023/11/22/201600 // 前計算 O(K 2^K + (P/2^K) log K), クエリ O(2^K) template<class T, bool is_ntt_friendly> struct FactorialFast { private: const int P, K; vector<T> Y, Z, fac; public: FactorialFast(const int K = 9) : P(T::mod()), K(K) { Y = {1}; for (int i = 0; i < K; i++) { Z = sample_points_shift<T, is_ntt_friendly>(Y, (1 << (i + 2)) - (1 << i), 1 << i); Z.insert(Z.begin(), Y.begin(), Y.end()); Y.resize(1 << (i + 1)); for (int j = 0; j < (1 << (i + 1)); j++) Y[j] = Z[2 * j] * Z[2 * j + 1] * T::raw((1 << i) * (2 * j + 1)); } if ((1 << K) <= P / (1 << K)) { Z = sample_points_shift<T, is_ntt_friendly>(Y, P / (1 << K), 1 << K); Y.insert(Y.end(), Z.begin(), Z.end()); } fac.resize(P / (1 << K) + 1); fac.at(0) = 1; for (int i = 0; i < P / (1 << K); i++) fac[i + 1] = fac[i] * Y[i] * T::raw((1 + i) * (1 << K)); } T query(ll n) { if (n >= T::mod()) return 0; T res = fac.at(n / (1 << K)); for (int j = n / (1 << K) * (1 << K) + 1; j <= n; j++) res *= T::raw(j); return res; } }; // f(x)/prod[i](1-a[i]x) = sum[i] c[i]/(1-a[i]x) なる c を求める template<class T, bool is_ntt_friendly> vector<T> partial_fraction_decomposition(const FormalPowerSeries<T, is_ntt_friendly> &f, const vector<T> &as) { using F = FormalPowerSeries<T, is_ntt_friendly>; int N = as.size(); assert((int)f.size() <= N); vector<T> bs(N); for (int i = 0; i < N; i++) bs[i] = as[i].inv(); vector<F> gs(N); for (int i = 0; i < N; i++) gs[i] = F{T(1), -as[i]}; F g = convolution_many(gs); F dg = g.differential(); vector<T> ys = f.eval_multipoint(bs), zs = dg.eval_multipoint(bs); vector<T> cs(N); for (int i = 0; i < N; i++) cs[i] = -as[i] * ys[i] / zs[i]; return cs; } // n = 0, 1, …, N-1 に対して n^k を列挙 template<class T> vector<T> enum_pow(int N, int k) { vector<int> minfactor(N, -1); for (int i = 2; i < N; i++) { if (minfactor[i] != -1) continue; for (int j = 2 * i; j < N; j += i) minfactor[j] = i; } vector<T> power(N); for (int i = 0; i < N; i++) { if (minfactor[i] == -1) power[i] = T(i).pow(k); else power[i] = power[minfactor[i]] * power[i / minfactor[i]]; } return power; } // sum_[i = 0..infty] r^i i^d template <class T, bool is_ntt_friendly> T sum_of_exp_times_poly_limit(T r, int d) { using F = FormalPowerSeries<T, is_ntt_friendly>; vector<T> pws = enum_pow<T>(d + 2, d); vector<T> pwr(d + 2, 1); for (int i = 0; i < d + 1; i++) pwr[i + 1] = pwr[i] * r; F f(d + 2), g(d + 2); f.front() = pws.front() * pwr.front(); for (int i = 0; i < d + 1; i++) f[i + 1] = f[i] + pws[i + 1] * pwr[i + 1]; for (int i = 0; i <= d + 1; i++) g[i] = (i % 2 == 0 ? 1 : -1) * pwr[i] * g.get_fac(d + 1) * g.get_finv(i) * g.get_finv(d + 1 - i); T c = 0; for (int i = 0; i <= d + 1; i++) c += f[i] * g[d + 1 - i]; c /= accumulate(g.begin(), g.end(), T(0)); return c; } // sum_[i = 0..n-1] r^i i^d template <class T, bool is_ntt_friendly> T sum_of_exp_times_poly(T r, int d, ll n) { using F = FormalPowerSeries<T, is_ntt_friendly>; if (n == 0) return 0; if (r == 0) return d == 0 ? 1 : 0; vector<T> pws = enum_pow<T>(d + 2, d); vector<T> pwr(d + 2, 1); for (int i = 0; i < d + 1; i++) pwr[i + 1] = pwr[i] * r; F f(d + 2), g(d + 2); f.front() = pws.front() * pwr.front(); for (int i = 0; i < d + 1; i++) f[i + 1] = f[i] + pws[i + 1] * pwr[i + 1]; if (r == 1) { LagrangeInterpolation<T> lag(f); return lag.eval(n - 1); } for (int i = 0; i <= d + 1; i++) g[i] = (i % 2 == 0 ? 1 : -1) * pwr[i] * g.get_fac(d + 1) * g.get_finv(i) * g.get_finv(d + 1 - i); T c = 0; for (int i = 0; i <= d + 1; i++) c += f[i] * g[d + 1 - i]; c /= accumulate(g.begin(), g.end(), T(0)); F h = f - F(d + 2, c); { T rinv = r.inv(); T pwrinv = 1; for (int i = 0; i <= d + 1; i++) { h[i] *= pwrinv; pwrinv *= rinv; } } LagrangeInterpolation<T> lag(h); return c + r.pow(n - 1) * lag.eval(n - 1); } // prod[d in D](1 + cx^d) を M 次の項まで求める template <class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> multiply_many(const int &M, const T &c, const vector<int> &D) { using F = FormalPowerSeries<T, is_ntt_friendly>; vector<int> cnt(M + 1, 0); for (auto d : D) { if (d < 0 || M < d) continue; cnt[d]++; } F f(M + 1, 0); for (int k = 1; k <= M; k++) { T pw = 1; for (int i = 1; k * i <= M; i++) { pw *= c; if (i & 1) f[k * i] += T::raw(cnt[k]) * pw * f.get_invmint(i); else f[k * i] -= T::raw(cnt[k]) * pw * f.get_invmint(i); } } return f.exp(); } // 多重集合 S の要素から何個か選んで総和を 0, 1, …, M にする方法の数 template <class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> subset_sum(const int &M, const vector<int> &S) { return multiply_many<T, is_ntt_friendly>(M, T(1), S); } // 集合 S の各要素が無限個ある集合 T から何個か選んで総和を 0, 1, …, M にする方法の数 template <class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> partition(const int &M, const vector<int> &S) { return multiply_many<T, is_ntt_friendly>(M, T(-1), S).inv(); } template<class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> stirling1(const int &N) { using F = FormalPowerSeries<T, is_ntt_friendly>; using S = SparseFormalPowerSeries<T, is_ntt_friendly>; if (N == 0) return {1}; if (N == 1) return {0, 1}; if (N & 1) { F f = stirling1<T, is_ntt_friendly>(N - 1); f.resize(N + 1, T(0)); return f * S{{0, 1 - N}, {1, 1}}; } else { F f = stirling1<T, is_ntt_friendly>(N / 2); f.resize(N + 1, T(0)); F g = f.taylor_shift(-(N / 2)); return f * g; } } template<class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> stirling2(const int &N) { using F = FormalPowerSeries<T, is_ntt_friendly>; vector<T> power = enum_pow<T>(N + 1, N); F A(N + 1), B(N + 1); for (int i = 0; i <= N; i++) { A[i] = power[i] * A.get_finv(i); B[i] = (i & 1) ? -A.get_finv(i) : A.get_finv(i); } return A * B; } template<class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> bernoulli_number(const int &N) { using F = FormalPowerSeries<T, is_ntt_friendly>; F f(N + 1, T(0)); for (int i = 0; i <= N; i++) f[i] = f.get_finv(i + 1); return f.inv().to_ogf(); } // [x^N] P(x)/Q(x) を求める(P の次数は Q の次数より小さい) template<class T, bool is_ntt_friendly> T bostan_mori(const FormalPowerSeries<T, is_ntt_friendly> &P, const FormalPowerSeries<T, is_ntt_friendly> &Q, ll N) { using F = FormalPowerSeries<T, is_ntt_friendly>; int d = (int)Q.size() - 1; assert((int)P.size() <= d); if (is_ntt_friendly) { int z = 1; while (z < 2 * d + 1) z <<= 1; T iz = T(z).inv(); F U = F(P), V = F(Q); U.resize(z), V.resize(z); while (N > 0) { U.butterfly2(U), V.butterfly2(V); for (int i = 0; i < z; i += 2) { T x = V[i + 1], y = V[i]; U[i] *= x, V[i] *= x; U[i + 1] *= y, V[i + 1] *= y; } U.butterfly_inv2(U), V.butterfly_inv2(V); for (int i = 0; i < (z >> 1); i++) { U[i] = U[2 * i + (N & 1)] * iz; V[i] = V[2 * i] * iz; } for (int i = (z >> 1); i < z; i++) U[i] = 0, V[i] = 0; N >>= 1; } return U.front() / V.front(); } else { F U = F(P), V = F(Q); U.resize(d), V.resize(d + 1); while (N > 0) { F U2 = F(U), V2 = F(V), V3 = F(V); for (int i = 1; i <= d; i += 2) V3[i] = -V3[i]; U2 *= V3, V2 *= V3; for (int i = 0; i <= d; i++) { U[i] = U2[2 * i + (N & 1)]; V[i] = V2[2 * i]; } N >>= 1; } return U.front() / V.front(); } } // a_n = sum[i = 1..d] c_i a_{n-i}(n ≥ d)を満たすとき、a_N を求める(A は 0-indexed で C は 1-indexed) template<class T, bool is_ntt_friendly> T linear_recurrence(const vector<T> &A, const vector<T> &C, ll N) { using F = FormalPowerSeries<T, is_ntt_friendly>; int d = C.size(); assert((int)A.size() >= d); F Ga(d), Q(d + 1); Q[0] = 1; for (int i = 0; i < d; i++) Ga[i] = A[i], Q[i + 1] = -C[i]; F P = Ga * Q; return bostan_mori(P, Q, N); } // (P の次数) < (Q の次数) とする // P/Q = R + x^N (P'/Q) を満たす P' (R は N 次未満、P' は d 次未満) // [x^{N+n}](P/Q) = [x^n](P'/Q) 線形漸化的数列のシフト // 高速化の余地あり template<class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> fiduccia(const FormalPowerSeries<T, is_ntt_friendly> &P, const FormalPowerSeries<T, is_ntt_friendly> &Q, ll N) { using F = FormalPowerSeries<T, is_ntt_friendly>; assert(P.size() < Q.size()); F xinv = -(Q >> 1); if (Q[0] != 1) xinv /= Q[0]; return xinv.powmod(N, Q) * P % Q; } // a_n = sum[i = 1..d] c_i a_{n-i}(n ≥ d)を満たすとき、a_N, …, a_{N+d-1} を求める(A は 0-indexed で C は 1-indexed) template<class T, bool is_ntt_friendly> vector<T> linear_recurrence_many(const vector<T> &A, const vector<T> &C, ll N) { using F = FormalPowerSeries<T, is_ntt_friendly>; int d = C.size(); assert((int)A.size() >= d); F Ga(d), Q(d + 1); Q[0] = 1; for (int i = 0; i < d; i++) Ga[i] = A[i], Q[i + 1] = -C[i]; F P = Ga * Q; F P2 = fiduccia(P, Q, N); P2.resize(d); F Gb = P2 / Q + (P.div_poly(Q) >> N); return Gb; } // Σ[i = 0..M-1] a_i exp(b_i x) を N 項まで求める template<class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> exp_sum(int N, const vector<T> &a, const vector<T> &b) { using F = FormalPowerSeries<T, is_ntt_friendly>; using R = RationalFormalPowerSeries<T, is_ntt_friendly>; assert(a.size() == b.size()); int M = a.size(); vector<R> gs(M); for (int i = 0; i < M; i++) gs[i] = R{F{a[i]}, F{1, -b[i]}}; R g = rational_sum(gs, N); return (g.num / g.den).to_egf(); } // f(exp(kx)) を N 項まで求める template<class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> eval_exp(FormalPowerSeries<T, is_ntt_friendly> &f, T k, int N = -1) { if (N == -1) N = (int)f.size(); vector<T> b(f.size()); for (int i = 0; i < (int)f.size(); i++) b[i] = k * i; return exp_sum<T, is_ntt_friendly>(N, f, b); } /* using mint = modint998244353; const bool ntt = true; //*/ //* using mint = modint1000000007; const bool ntt = false; //*/ /* using mint = modint; const bool ntt = false; //*/ using fps = FormalPowerSeries<mint, ntt>; using sfps = SparseFormalPowerSeries<mint, ntt>; using rfps = RationalFormalPowerSeries<mint, ntt>; int main() { ll N; cin >> N; FactorialFast<mint, ntt> fac(13); cout << fac.query(N).val() << endl; }