結果

問題 No.2569 はじめてのおつかいHard
ユーザー ecotteaecottea
提出日時 2023-12-02 15:35:25
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 8,404 bytes
コンパイル時間 4,193 ms
コンパイル使用メモリ 259,592 KB
最終ジャッジ日時 2025-02-18 04:45:02
ジャッジサーバーID
(参考情報)
judge1 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 7 WA * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//
/*
* to :
* cost :
*/
struct WEdge {
// verify : https://judge.yosupo.jp/problem/shortest_path
int to; //
ll cost; //
WEdge() : to(-1), cost(-INFL) {}
WEdge(int to, ll cost) : to(to), cost(cost) {}
//
operator int() const { return to; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const WEdge& e) {
os << '(' << e.to << ',' << e.cost << ')';
return os;
}
#endif
};
//
/*
* WGraph g
* g[v] : v
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;
//O(n + m)
/*
* (, , ) n m
*
* n :
* m : n-1
* undirected : true
* one_indexed : 1-indexed true
*/
WGraph read_WGraph(int n, int m = -1, bool undirected = true, bool one_indexed = true) {
// verify : https://judge.yosupo.jp/problem/shortest_path
WGraph g(n);
if (m == -1) m = n - 1;
rep(i, m) {
int a, b; ll c;
cin >> a >> b >> c;
if (one_indexed) { --a; --b; }
g[a].push_back({ b, c });
if (undirected) g[b].push_back({ a, c });
}
return g;
}
//O(n + m)
/*
* g
*/
WGraph reverse_graph(const WGraph& g) {
int n = sz(g);
WGraph g_rev(n);
rep(s, n) repe(e, g[s]) g_rev[e.to].emplace_back(s, e.cost);
return g_rev;
}
//O(n + m log n)
/*
* g st INFL
*/
vl dijkstra(const WGraph& g, int st) {
// : https://snuke.hatenablog.com/entry/2021/02/22/102734
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_bl
int n = sz(g);
vl dist(n, INFL); // st
dist[st] = 0;
// (st , )
priority_queue_rev<pli> q;
q.push({ 0, st });
while (!q.empty()) {
auto [c, s] = q.top(); q.pop();
// O(n^2)
if (dist[s] < c) continue;
// 辿
repe(e, g[s]) if (chmin(dist[e.to], dist[s] + e.cost)) q.push({ dist[e.to], e.to });
}
return dist;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, m;
cin >> n >> m;
auto g = read_WGraph(n, m, false);
auto gR = reverse_graph(g);
auto d1 = dijkstra(g, n - 1);
auto d2 = dijkstra(g, n - 2);
auto d1R = dijkstra(gR, n - 1);
auto d2R = dijkstra(gR, n - 2);
rep(k, n - 2) {
ll res = INFL;
chmin(res, d1R[k] + d1[n - 2] + d2[k]);
chmin(res, d2R[k] + d2[n - 1] + d1[k]);
if (res == INFL) res = -1;
cout << res << endl;
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0