結果

問題 No.2573 moving up
ユーザー hitonanode
提出日時 2023-12-02 15:46:37
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 6 ms / 2,000 ms
コード長 12,734 bytes
コンパイル時間 2,645 ms
コンパイル使用メモリ 202,020 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-27 01:27:17
合計ジャッジ時間 3,352 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r
    .first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r
    .first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end
    ()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os <<
    ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v
    << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);},
    tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) {
    ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os
    << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os <<
    ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';
    return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os <<
    '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v <<
    ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa
    .second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v
    .first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for
    (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9
    ;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET
    << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " <<
    __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif
#include <cassert>
#include <tuple>
#include <vector>
namespace linear_sum_assignment {
template <class T>
T augment(int nr, int nc, const std::vector<std::vector<T>> &C, std::vector<T> &f,
std::vector<T> &g, int s, std::vector<int> &mate, std::vector<int> &mate_inv) {
assert(0 <= s and s < nr);
assert(mate.at(s) < 0);
static std::vector<T> dist;
static std::vector<int> prv;
dist.resize(nc);
prv.resize(nc);
f.at(s) = C.at(s).at(0) - g.at(0);
for (int j = 1; j < nc; ++j) f.at(s) = std::min(f.at(s), C.at(s).at(j) - g.at(j));
for (int j = 0; j < nc; ++j) {
dist.at(j) = C.at(s).at(j) - f.at(s) - g.at(j);
prv.at(j) = s;
}
std::vector<bool> done(nc);
int t = -1;
std::vector<int> stk;
while (t == -1) {
int j1 = -1;
for (int j = 0; j < nc; ++j) {
if (done.at(j)) continue;
if (j1 == -1 or dist.at(j) < dist.at(j1) or
(dist.at(j) == dist.at(j1) and mate_inv.at(j) < 0)) {
j1 = j;
}
}
if (j1 == -1) return false;
if (mate_inv.at(j1) < 0) {
t = j1;
break;
}
done.at(j1) = 1;
stk = {j1};
while (!stk.empty()) {
const int i = mate_inv.at(stk.back());
if (i < 0) {
t = stk.back();
break;
}
stk.pop_back();
for (int j = 0; j < nc; ++j) {
if (done.at(j)) continue;
const T len = C.at(i).at(j) - f.at(i) - g.at(j);
if (dist.at(j) > dist.at(j1) + len) {
dist.at(j) = dist.at(j1) + len;
prv.at(j) = i;
}
if (len == T()) {
stk.push_back(j);
done.at(j) = 1;
}
}
}
}
const T len = dist.at(t);
f.at(s) += len;
T ret = len;
for (int j = 0; j < nc; ++j) {
if (!done.at(j)) continue;
g.at(j) -= len - dist.at(j);
if (mate_inv.at(j) >= 0) {
f.at(mate_inv.at(j)) += len - dist.at(j);
} else {
ret -= len - dist.at(j);
}
}
for (int cur = t; cur >= 0;) {
const int i = prv.at(cur);
mate_inv.at(cur) = i;
if (i == -1) break;
std::swap(cur, mate.at(i));
}
return ret;
}
// Complexity: O(nr^2 nc)
template <class T>
std::tuple<T, std::vector<int>, std::vector<T>, std::vector<T>>
_solve(int nr, int nc, const std::vector<std::vector<T>> &C) {
assert(nr <= nc);
std::vector<int> mate(nr, -1);
std::vector<int> mate_inv(nc, -1);
std::vector<T> f(nr), g(nc); // dual variables, f[i] + g[j] <= C[i][j] holds
if (nr == 0 or nc == 0) return {T(), mate, f, g};
if (nr == nc) {
// Column reduction
for (int j = nc - 1; j >= 0; --j) {
g.at(j) = C.at(0).at(j) - f.at(0);
int imin = 0;
for (int i = 1; i < nr; ++i) {
if (g.at(j) > C.at(i).at(j) - f.at(i)) {
imin = i;
g.at(j) = C.at(i).at(j) - f.at(i);
}
}
if (mate.at(imin) < 0) {
mate.at(imin) = j;
mate_inv.at(j) = imin;
} else if (g.at(j) < g.at(mate.at(imin))) {
mate_inv.at(mate.at(imin)) = -1;
mate.at(imin) = j;
mate_inv.at(j) = imin;
}
}
// Reduction transfer (can be omitted)
if (nc > 1) {
for (int i = 0; i < nr; ++i) {
if (mate.at(i) < 0) continue;
T best = C.at(i).at(0) - g.at(0), second_best = C.at(i).at(1) - g.at(1);
int argbest = 0;
if (best > second_best) std::swap(best, second_best), argbest = 1;
for (int j = 2; j < nc; ++j) {
if (T val = C.at(i).at(j) - g.at(j); val < best) {
second_best = best;
best = val;
argbest = j;
} else if (val < second_best) {
second_best = val;
}
}
g.at(argbest) -= second_best - best;
f.at(i) = second_best;
}
}
// Augmenting row reduction: not implemented
}
// Augmentation
for (int i = 0; i < nr; ++i) {
if (mate.at(i) < 0) augment(nr, nc, C, f, g, i, mate, mate_inv);
}
T ret = 0;
for (int i = 0; i < nr; ++i) ret += C.at(i).at(mate.at(i));
return {ret, mate, std::move(f), std::move(g)};
}
// Jonker–Volgenant algorithm: find minimum weight assignment
// Dual problem (nr == nc): maximize sum(f) + sum(g) s.t. f_i + g_j <= C_ij
// Complexity: O(nr nc min(nr, nc))
template <class T>
std::tuple<T, std::vector<int>, std::vector<T>, std::vector<T>>
solve(int nr, int nc, const std::vector<std::vector<T>> &C) {
const bool transpose = (nr > nc);
if (!transpose) return _solve(nr, nc, C);
std::vector trans(nc, std::vector<T>(nr));
for (int i = 0; i < nr; ++i) {
for (int j = 0; j < nc; ++j) trans.at(j).at(i) = C.at(i).at(j);
}
auto [v, mate, f, g] = _solve(nc, nr, trans);
std::vector<int> mate2(nr, -1);
for (int j = 0; j < nc; ++j) {
if (mate.at(j) >= 0) mate2.at(mate.at(j)) = j;
}
return {v, mate2, g, f};
}
} // namespace linear_sum_assignment
int main() {
int H, W;
cin >> H >> W;
vector cost(W, vector<int>(W));
REP(i, W) {
int x, y;
cin >> x >> y;
REP(j, W) {
const int h = x - 1;
const int ylo = y - h, yhi = y;
int ytgt = j + 1;
int cost_row = 0;
if (ytgt < ylo) cost_row = ylo - ytgt;
if (yhi < ytgt) cost_row = ytgt - yhi;
cost.at(i).at(j) = cost_row + h;
}
}
dbg(cost);
auto ret = linear_sum_assignment::solve(W, W, cost);
dbg(ret);
cout << get<0>(ret) << '\n';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0