結果

問題 No.2569 はじめてのおつかいHard
ユーザー ei1333333ei1333333
提出日時 2023-12-02 16:05:52
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 211 ms / 2,000 ms
コード長 5,039 bytes
コンパイル時間 4,832 ms
コンパイル使用メモリ 273,120 KB
実行使用メモリ 32,604 KB
最終ジャッジ日時 2024-09-26 19:49:47
合計ジャッジ時間 6,825 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 54 ms
13,056 KB
testcase_01 AC 52 ms
13,056 KB
testcase_02 AC 52 ms
12,928 KB
testcase_03 AC 56 ms
13,056 KB
testcase_04 AC 57 ms
13,056 KB
testcase_05 AC 211 ms
32,024 KB
testcase_06 AC 156 ms
21,424 KB
testcase_07 AC 176 ms
32,428 KB
testcase_08 AC 207 ms
32,604 KB
testcase_09 AC 97 ms
18,132 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;

using int64 = long long;
constexpr int mod = 998244353;
constexpr int64 infll = (1LL << 62) - 1;
constexpr int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template<typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
  os << p.first << " " << p.second;
  return os;
}

template<typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
  is >> p.first >> p.second;
  return is;
}

template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  for (int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template<typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (T &in : v) is >> in;
  return is;
}

template<typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template<typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template<typename T = int64>
vector<T> make_v(size_t a) {
  return vector<T>(a);
}

template<typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
  return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}

template<typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
  t = v;
}

template<typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
  for (auto &e : t) fill_v(e, v);
}

template<typename F>
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(forward<F>(f)) {}

  template<typename... Args>
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward<Args>(args)...);
  }
};

template<typename F>
inline decltype(auto) MFP(F &&f) {
  return FixPoint<F>{forward<F>(f)};
}
#line 2 "graph/shortest-path/dijkstra.hpp"

#line 2 "graph/graph-template.hpp"

/**
 * @brief Graph Template(グラフテンプレート)
 */
template< typename T = int >
struct Edge {
  int from, to;
  T cost;
  int idx;

  Edge() = default;

  Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}

  operator int() const { return to; }
};

template< typename T = int >
struct Graph {
  vector< vector< Edge< T > > > g;
  int es;

  Graph() = default;

  explicit Graph(int n) : g(n), es(0) {}

  size_t size() const {
    return g.size();
  }

  void add_directed_edge(int from, int to, T cost = 1) {
    g[from].emplace_back(from, to, cost, es++);
  }

  void add_edge(int from, int to, T cost = 1) {
    g[from].emplace_back(from, to, cost, es);
    g[to].emplace_back(to, from, cost, es++);
  }

  void read(int M, int padding = -1, bool weighted = false, bool directed = false) {
    for(int i = 0; i < M; i++) {
      int a, b;
      cin >> a >> b;
      a += padding;
      b += padding;
      T c = T(1);
      if(weighted) cin >> c;
      if(directed) add_directed_edge(a, b, c);
      else add_edge(a, b, c);
    }
  }

  inline vector< Edge< T > > &operator[](const int &k) {
    return g[k];
  }

  inline const vector< Edge< T > > &operator[](const int &k) const {
    return g[k];
  }
};

template< typename T = int >
using Edges = vector< Edge< T > >;
#line 4 "graph/shortest-path/dijkstra.hpp"

/**
 * @brief Dijkstra(単一始点最短路)
 * @docs docs/dijkstra.md
 */
template< typename T >
struct ShortestPath {
  vector< T > dist;
  vector< int > from, id;
};

template< typename T >
ShortestPath< T > dijkstra(const Graph< T > &g, int s) {
  const auto INF = numeric_limits< T >::max() / 5;
  vector< T > dist(g.size(), INF);
  vector< int > from(g.size(), -1), id(g.size(), -1);
  using Pi = pair< T, int >;
  priority_queue< Pi, vector< Pi >, greater<> > que;
  dist[s] = 0;
  que.emplace(dist[s], s);
  while(!que.empty()) {
    T cost;
    int idx;
    tie(cost, idx) = que.top();
    que.pop();
    if(dist[idx] < cost) continue;
    for(auto &e : g[idx]) {
      auto next_cost = cost + e.cost;
      if(dist[e.to] <= next_cost) continue;
      dist[e.to] = next_cost;
      from[e.to] = idx;
      id[e.to] = e.idx;
      que.emplace(dist[e.to], e.to);
    }
  }
  return {dist, from, id};
}

int main() {
  int N, M;
  cin >> N >> M;
  Graph< int64 > g(N), rev(N);
  for(int i = 0; i < M; i++) {
    int u, v, t;
    cin >> u >> v >> t;
    --u, --v;
    g.add_directed_edge(u, v, t);
    rev.add_directed_edge(v, u, t);
  }
  // k -> N-1 -> N-2 -> k
  // k -> N-2 -> N-1 -> k
  auto toN1 = dijkstra(rev, N - 1).dist;
  auto toN2 = dijkstra(rev, N - 2).dist;
  auto fromN1 = dijkstra(g, N - 1).dist;
  auto fromN2 = dijkstra(g, N - 2).dist;
  for(int i = 0; i + 2 < N; i++) {
    int64 ret = infll;
    chmin(ret, toN1[i] + fromN1[N - 2] + fromN2[i]);
    chmin(ret, toN2[i] + fromN2[N - 1] + fromN1[i]);
    if(ret >= infll / 10) ret = -1;
    cout << ret << "\n";
  }
}
0