結果

問題 No.2573 moving up
ユーザー ei1333333
提出日時 2023-12-02 16:32:51
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 375 ms / 2,000 ms
コード長 7,097 bytes
コンパイル時間 5,012 ms
コンパイル使用メモリ 262,620 KB
最終ジャッジ日時 2025-02-18 05:30:31
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using int64 = long long;
constexpr int mod = 998244353;
constexpr int64 infll = (1LL << 62) - 1;
constexpr int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template<typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template<typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template<typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template<typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template<typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template<typename T = int64>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template<typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
template<typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
t = v;
}
template<typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
for (auto &e : t) fill_v(e, v);
}
template<typename F>
struct FixPoint : F {
explicit FixPoint(F &&f) : F(forward<F>(f)) {}
template<typename... Args>
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward<Args>(args)...);
}
};
template<typename F>
inline decltype(auto) MFP(F &&f) {
return FixPoint<F>{forward<F>(f)};
}
#line 1 "math/matrix/matrix.hpp"
template< class T >
struct Matrix {
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
size_t size() const {
if(A.empty()) return 0;
assert(A.size() == A[0].size());
return A.size();
}
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const vector< T > &operator[](int k) const {
return (A.at(k));
}
inline vector< T > &operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
for(int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while(k > 0) {
if(k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const {
return (Matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for(int i = 0; i < n; i++) {
os << "[";
for(int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for(int i = 0; i < width(); i++) {
int idx = -1;
for(int j = i; j < width(); j++) {
if(B[j][i] != 0) idx = j;
}
if(idx == -1) return (0);
if(i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for(int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for(int j = i + 1; j < width(); j++) {
T a = B[j][i];
for(int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
#line 2 "graph/flow/hungarian.hpp"
/**
* @brief Hungarian()
* @docs docs/hungarian.md
*/
template< typename T >
pair< T, vector< int > > hungarian(Matrix< T > &A) {
const T infty = numeric_limits< T >::max();
const int N = (int) A.height();
const int M = (int) A.width();
vector< int > P(M), way(M);
vector< T > U(N, 0), V(M, 0), minV;
vector< bool > used;
for(int i = 1; i < N; i++) {
P[0] = i;
minV.assign(M, infty);
used.assign(M, false);
int j0 = 0;
while(P[j0] != 0) {
int i0 = P[j0], j1 = 0;
used[j0] = true;
T delta = infty;
for(int j = 1; j < M; j++) {
if(used[j]) continue;
T curr = A[i0][j] - U[i0] - V[j];
if(curr < minV[j]) minV[j] = curr, way[j] = j0;
if(minV[j] < delta) delta = minV[j], j1 = j;
}
for(int j = 0; j < M; j++) {
if(used[j]) U[P[j]] += delta, V[j] -= delta;
else minV[j] -= delta;
}
j0 = j1;
}
do {
P[j0] = P[way[j0]];
j0 = way[j0];
} while(j0 != 0);
}
return {-V[0], P};
}
const int vy[] = {-1, -1, 0, 0, 1, 1};
const int vx[] = {-1, 0, -1, 1, 0, 1};
int main() {
int H, W;
cin >> H >> W;
vector< int > X(W), Y(W);
for(int i = 0; i < W; i++) {
cin >> X[i] >> Y[i];
}
Matrix< int > mat(W + 1, W + 1);
for(int p = 0; p < W; p++) {
vector<vector<int> > D(H);
for (int i = 0; i < H; i++) {
D[i].resize(i + W, inf);
}
queue<pair<int, int> > que;
que.emplace(0, p);
D[0][p] = 0;
while (not que.empty()) {
auto [y, x] = que.front();
que.pop();
for (int k = 0; k < 6; k++) {
auto ny = y + vy[k];
auto nx = x + vx[k];
if (ny < 0 or ny >= H) continue;
if (nx < 0 or nx >= D[ny].size()) continue;
if (chmin(D[ny][nx], D[y][x] + 1)) {
que.emplace(ny, nx);
}
}
}
for(int i = 0; i < W; i++) {
mat[i + 1][p + 1] = D[X[i] - 1][Y[i] - 1];
}
}
cout << hungarian(mat).first << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0