結果

問題 No.2565 はじめてのおつかい
ユーザー 👑 p-adicp-adic
提出日時 2023-12-02 16:50:15
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 86 ms / 2,000 ms
コード長 63,105 bytes
コンパイル時間 12,395 ms
コンパイル使用メモリ 302,028 KB
最終ジャッジ日時 2025-02-18 05:42:27
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 50
権限があれば一括ダウンロードができます
コンパイルメッセージ
In file included from main.cpp:263,
                 from main.cpp:616,
                 from main.cpp:946:
main.cpp: In function 'void Solve()':
main.cpp:79:32: warning: narrowing conversion of 'N' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing]
   79 |   Dijkstra<E<path>,bound_N> d{ N };
      |                                ^

ソースコード

diff #
プレゼンテーションモードにする

#ifdef INCLUDE_MAIN
inline void Solve()
{
// //
DEXPR( ll , bound_N , 100000 , 100 ); // 05
// // // DEXPR( ll , bound_N , 1000000000 , 100 ); // 09
// // // DEXPR( ll , bound_N , 1000000000000000000 , 100 ); // 018
// // CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );
// // // DEXPR( ll , bound_M , 100000 , 100 ); // 05
// // // DEXPR( ll , bound_M , 1000000000 , 100 ); // 09
// // // DEXPR( ll , bound_M , 1000000000000000000 , 100 ); // 018
CIN( ll , N , M );
// // CIN( ll , M );
// // CIN( ll , N , M , K );
// // CIN_ASSERT( N , 1 , bound_N ); // 10^5
// // CIN_ASSERT( M , 1 , bound_M ); // 10^5
// ll answer = 0;
// // MP answer = 0;
// // auto answer = Answer( N , M , K );
// // COUT( answer );
// RETURN( answer );
// //
// CIN( string , S );
// // CIN( string , T );
// ll answer = 0;
// // MP answer = 0;
// // auto answer = Answer( N , M , K );
// // COUT( answer );
// RETURN( answer );
// //
// CIN_A( ll , A , N );
// // CIN_A( ll , B , N );
// // vector<ll> A( N );
// // vector<ll> B( N );
// // ll A[bound_N]; // 使10^5
// // ll B[bound_N]; // 使10^5
// // FOR( i , 0 , N ){
// // cin >> A[i] >> B[i];
// // }
// ll answer = 0;
// // MP answer = 0;
// // auto answer = Answer( N , M , K );
// // COUT( answer );
// // COUT_A( A , N );
// RETURN( answer );
// //
// vector<int> A( N );
// vector<int> A_inv( N );
// FOR( i , 0 , N ){
// cin >> A[i];
// A_inv[--A[i]] = i;
// }
// ll answer = 0;
// // MP answer = 0;
// // auto answer = Answer( N , M , K );
// // COUT( answer );
// // COUT_A( A , N );
// RETURN( answer );
//
// e<int>.resize( N );
e<path>.resize( N );
FOR( j , 0 , M ){
CIN_ASSERT( uj , 1 , N );
CIN_ASSERT( vj , 1 , N );
uj--;
vj--;
// e<int>[uj].push_back( vj );
// e<int>[vj].push_back( uj );
// CIN( ll , wj );
e<path>[uj].push_back( { vj , 1 } );
// e<path>[vj].push_back( { uj , wj } );
}
Dijkstra<E<path>,bound_N> d{ N };
vector<ll> weight;
d.Solve( 0 , weight );
ll d1 = weight[ N - 2 ];
ll d2 = weight[ N - 1 ];
d.Solve( N - 2 , weight );
ll d3 = weight[ 0 ];
ll d4 = weight[ N - 1 ];
d.Solve( N - 1 , weight );
ll d5 = weight[ 0 ];
ll d6 = weight[ N - 2 ];
ll answer = d.Infty();
if( d1 == d.Infty() ){
d1 /= 4;
}
if( d2 == d.Infty() ){
d2 /= 4;
}
if( d3 == d.Infty() ){
d3 /= 4;
}
if( d4 == d.Infty() ){
d4 /= 4;
}
if( d5 == d.Infty() ){
d5 /= 4;
}
if( d6 == d.Infty() ){
d6 /= 4;
}
ll a[5] = { d1 + d4 + d5 , d2 + d6 + d3 , d1 + d3 + d2 + d5 , d1 + d4 + d6 + d3 , d2 + d6 + d4 + d5 };
FOR( i , 0 , 5 ){
answer = min( answer , a[i] );
}
COUT( answer >= d.Infty() / 4 ? -1 : answer );
// MP answer = 0;
// auto answer = Answer( N , M , K );
// COUT( answer );
// COUT_A( A , N );
// RETURN( answer );
// //
// vector<T3<ll> > data( M );
// FOR( j , 0 , M ){
// CIN( ll , x , y , z );
// data[j] = { x , y , z };
// }
// ll answer = 0;
// // MP answer = 0;
// // auto answer = Answer( N , M , K );
// // COUT( answer );
// // COUT_A( A , N );
// RETURN( answer );
// //
// CIN( int , Q );
// // DEXPR( int , bound_Q , 100000 , 100 ); //
// // CIN_ASSERT( Q , 1 , bound_Q ); //
// // vector<T3<int> > query( Q );
// // vector<T2<int> > query( Q );
// FOR( q , 0 , Q ){
// CIN( int , type );
// if( type == 1 ){
// CIN( int , x , y );
// // query[q] = { type , x , y };
// } else if( type == 2 ){
// CIN( int , x , y );
// // query[q] = { type , x , y };
// } else {
// CIN( int , x , y );
// // query[q] = { type , x , y };
// }
// // CIN( int , x , y );
// // // query[q] = { x , y };
// }
// // sort( query , query + Q );
// // FOR( q , 0 , Q ){
// // auto& [x,y] = query[q];
// // // auto& [type,x,y] = query[q];
// // }
// auto answer = Answer( N , M , K );
// // COUT( answer );
// // COUT_A( A , N );
// RETURN( answer );
// //
// // DEXPR( int , bound_H , 2000 , 30 );
// // // DEXPR( int , bound_H , 100000 , 10 ); // 05
// // // CEXPR( int , bound_H , 1000000000 ); // 09
// // // CEXPR( int , bound_W , bound_H );
// // static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );
// // CEXPR( int , bound_HW , bound_H * bound_W );
// // // CEXPR( int , bound_HW , 100000 ); // 05
// // // CEXPR( int , bound_HW , 1000000 ); // 06
// cin >> H >> W;
// // SET_ASSERT( H , 1 , bound_H ); // 2*10^3
// // SET_ASSERT( W , 1 , bound_W ); // 2*10^3
// H_minus = H - 1;
// W_minus = W - 1;
// HW = H * W;
// // assert( HW <= bound_HW ); // 4*10^6
// vector<string> S( H );
// FOR( i , 0 , H ){
// cin >> S[i];
// // SetEdgeOnGrid( S[i] , i , e<int> );
// // SetWallOnGrid( S[i] , i , non_wall );
// }
// // {h,w}: EnumHW( v )
// // {h,w}: EnumHW_inv( h , w );
// // (i,j)->(k,h): DirectionNumberOnGrid( i , j , k , h );
// // v->w: DirectionNumberOnGrid( v , w );
// // U<->DR<->L: ReverseDirectionNumberOnGrid( n );
// ll answer = 0;
// // MP answer = 0;
// // auto answer = Answer( N , M , K );
// // COUT( answer );
// // COUT_A( A , N );
// RETURN( answer );
}
REPEAT_MAIN(1);
#else // INCLUDE_MAIN
#ifdef INCLUDE_SUB
template <typename PATH> list<PATH> E( const int& i )
{
// list<PATH> answer{};
list<PATH> answer = e<PATH>[i];
// VVV
// AAA
return answer;
}
template <typename T> inline T F( const T& t ){ return f<T>[t]; }
template <typename T> inline T G( const int& i ){ return g<T>[i]; }
ll Naive( int N , int M , int K )
{
ll answer = N + M + K;
return answer;
}
ll Answer( ll N , ll M , ll K )
{
// START_WATCH;
ll answer = N + M + K;
// // TL100.0[ms]
// CEXPR( double , TL , 2000.0 );
// while( CHECK_WATCH( TL ) ){
// }
return answer;
}
inline void Experiment()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COUT( N , M , K , ":" , Naive( N , M , K ) );
// }
// }
// // cout << Naive( N ) << ",\n"[N==bound];
// }
}
inline void SmallTest()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COMPARE( N , M , K );
// }
// }
// // COMPARE( N );
// }
}
#define INCLUDE_MAIN
#include __FILE__
#else // INCLUDE_SUB
#ifdef INCLUDE_LIBRARY
/*
C-x 3 C-x o C-x C-f
BFS:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt
CoordinateCompress:
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt
DFSOnTree
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp
Divisor:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt
Polynomial
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt
UnionFind
c:/Users/user/Documents/Programming/Utility/VLTree/UnionFindForest/compress.txt
*/
// VVV
#define DIJKSTRA_BODY( SET_FOUND , SET_WEIGHT , UPDATE_FOUND , CHECK_FOUND , INITIALISE_PREV , SET_PREV ) \
static const U& unit = Unit(); \
assert( unit != m_found && unit < m_infty ); \
const int i_start = e_inv( t_start ); \
set<pair<U,int> > vertex{}; \
SET_FOUND; \
SET_WEIGHT; \
vertex.insert( pair<U,int>( weight[i_start] = unit , i_start ) ); \
INITIALISE_PREV; \
\
if( i_start != i_final ){ \
\
while( ! vertex.empty() ){ \
\
auto itr_vertex = vertex.begin(); \
const pair<U,int> v = *itr_vertex; \
const int& i = v.second; \
\
if( i == i_final ){ \
\
break; \
\
} \
\
const U& u = v.first; \
UPDATE_FOUND; \
vertex.erase( itr_vertex ); \
const list<pair<T,U> > edge_i = E( e( i ) ); \
list<pair<U,int> > changed_vertex{}; \
\
for( auto itr_edge_i = edge_i.begin() , end_edge_i = edge_i.end() ; itr_edge_i != end_edge_i ; itr_edge_i++ ){ \
\
const int& j = e_inv( itr_edge_i->first ); \
U& weight_j = weight[j]; \
\
if( CHECK_FOUND ){ \
\
const U& edge_ij = itr_edge_i->second; \
const U temp = Addition( u , edge_ij ); \
assert( edge_ij != m_found && temp != m_found && !( temp < edge_ij ) && temp < m_infty ); \
\
if( weight_j > temp ){ \
\
if( weight_j != m_infty ){ \
\
vertex.erase( pair<U,int>( weight_j , j ) ); \
\
} \
\
SET_PREV; \
changed_vertex.push_back( pair<U,int>( weight_j = temp , j ) ); \
\
} \
\
} \
\
} \
\
for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ \
\
vertex.insert( *itr_changed ); \
\
} \
\
} \
\
} \
// E
// O((size+|E|)log size)
// O(size^2)
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
class DijkstraBody
{
private:
int m_size;
U m_infty;
U m_found;
public:
inline DijkstraBody( const int& size , const U& infty , const U& found );
// m_infty
U Solve( const T& t_start , const T& t_final );
U Solve( const T& t_start , const T& t_final , list<T>& path );
void Solve( const T& t_start , vector<U>& weight );
void Solve( const T& t_start , vector<U>& weight , list<T> ( &path )[size_max] );
const U& Infty() const;
private:
virtual const U& Unit() const = 0;
virtual U Addition( const U& , const U& ) const = 0;
virtual T e( const int& i ) = 0;
virtual int e_inv( const T& t ) = 0;
virtual void Reset() = 0;
};
//
// (1) E20
// (2) 2^{31}-1E2size_max
// (6) Vu,vu->vpush
//
// O((size+|E|)log size)
// O((size+|E|)log size)
// O((size+|E|)log size)
// O(size^2 + |E| log size)
template <list<pair<int,ll> > E(const int&) , int size_max>
class Dijkstra :
public DijkstraBody<int,ll,E,size_max>
{
public:
inline Dijkstra( const int& size );
private:
inline const ll& Unit() const;
inline ll Addition( const ll& , const ll& ) const;
inline int e( const int& i );
inline int e_inv( const int& t );
inline void Reset();
};
//
// (1) E2e_U()
// (2) inftyE2size_max
// (3) foundE2size_maxinfty
// (4) (U,m_U:U^2->U,e_U:1->U)bool operator<(const U&,const U&)
// (6) Vu,vu->vpush
//
// O((size+|E|)(log size)^2)
// O((size+|E|)(log size)^2)
// O((size+|E|)(log size)^2)
// O(size^2 log size + |E|(log size)^2)
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max>
class MemorisationDijkstra :
public DijkstraBody<T,U,E,size_max>
{
private:
int m_length;
map<T,int> m_memory;
vector<T> m_memory_inv;
public:
inline MemorisationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );
private:
inline const U& Unit() const;
inline U Addition( const U& , const U& ) const;
inline T e( const int& i );
inline int e_inv( const T& t );
inline void Reset();
};
//
// (1) E2e_U()
// (2) inftyE2size_max
// (3) foundE2size_maxinfty
// (4) (U,m_U:U^2->U,e_U:1->U)bool operator<(const U&,const U&)
// (5) (enum_T,enum_T_inv)
// (6) Vu,vu->vpush
//
// O((size+|E|)log size)
// O((size+|E|)log size)
// O((size+|E|)log size)
// O(size^2 + |E| log size)
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)>
class EnumerationDijkstra :
public DijkstraBody<T,U,E,size_max>
{
public:
inline EnumerationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );
private:
inline const U& Unit() const;
inline U Addition( const U& , const U& ) const;
inline T e( const int& i );
inline int e_inv( const T& t );
inline void Reset();
};
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> inline DijkstraBody<T,U,E,size_max>::DijkstraBody( const int& size ,
    const U& infty , const U& found ) : m_size( size ) , m_infty( infty ) , m_found( found ) { static_assert( ! is_same<U,int>::value ); }
template <list<pair<int,ll> > E(const int&) , int size_max> inline Dijkstra<E,size_max>::Dijkstra( const int& size ) : DijkstraBody<int,ll,E,size_max
    >( size , 9223372036854775807 , -1 ) {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::MemorisationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody<T,U,E
    ,size_max>( size , infty , found ) , m_length() , m_memory() , m_memory_inv() {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::EnumerationDijkstra( const int& size , const U&
    infty , const U& found ) : DijkstraBody<T,U,E,size_max>( size , infty , found ) {}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final )
{
const int i_final = e_inv( t_final ); \
DIJKSTRA_BODY( , vector<U> weight( m_size , m_infty ) , weight[i] = m_found , weight_j != m_found , , );
Reset();
return weight[i_final];
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final , list<T>& path )
{
const int i_final = e_inv( t_final ); \
DIJKSTRA_BODY( , vector<U> weight( m_size , m_infty ) , weight[i] = m_found , weight_j != m_found , vector<int> prev( m_size ) , prev[j] = i );
int i = i_final;
while( i != i_start ){
path.push_front( e( i ) );
i = prev[i];
}
path.push_front( t_start );
Reset();
return weight[i_final];
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
void DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , vector<U>& weight )
{
constexpr const int i_final = -1;
DIJKSTRA_BODY( vector<bool> found( m_size ) , weight = vector<U>( m_size , m_infty ) , found[i] = true , !found[j] , , );
Reset();
return;
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
void DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , vector<U>& weight , list<T> ( &path )[size_max] )
{
constexpr const int i_final = -1;
DIJKSTRA_BODY( vector<bool> found( m_size ) , weight = vector<U>( m_size , m_infty ) , found[i] = true , !found[j] , vector<int> prev( m_size ) ,
      prev[j] = i );
for( int j = 0 ; j < m_size ; j++ ){
list<T>& path_j = path[j];
int i = j;
while( i != i_start ){
path_j.push_front( e( i ) );
i = prev[i];
}
path_j.push_front( t_start );
}
Reset();
return;
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> const U& DijkstraBody<T,U,E,size_max>::Infty() const { return
    m_infty; }
template <list<pair<int,ll> > E(const int&) , int size_max> inline const ll& Dijkstra<E,size_max>::Unit() const { static const ll unit = 0; return
    unit; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline const U&
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Unit() const { return e_U(); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline const U& EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Unit() const { return e_U(); }
template <list<pair<int,ll> > E(const int&) , int size_max> inline ll Dijkstra<E,size_max>::Addition( const ll& u0 , const ll& u1 ) const { return u0
    + u1; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline U
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline U EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Addition( const U& u0 , const U& u1 ) const {
    return m_U( u0 , u1 ); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline T
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::e( const int& i ) { assert( i < m_length ); return m_memory_inv[i]; }
template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e( const int& i ) { return i; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline T EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e( const int& i ) { return enum_T( i ); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline int
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::e_inv( const T& t )
{
using base = DijkstraBody<T,U,E,size_max>;
if( m_memory.count( t ) == 0 ){
assert( m_length < base::m_size );
m_memory_inv.push_back( t );
return m_memory[t] = m_length++;
}
return m_memory[t];
}
template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e_inv( const int& t ) { return t; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline int EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e_inv( const T& t ) { return enum_T_inv( t );
    }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline void
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Reset() { m_length = 0; m_memory.clear(); m_memory_inv.clear(); }
template <list<pair<int,ll> > E(const int&) , int size_max> inline void Dijkstra<E,size_max>::Reset() {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline void EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Reset() {}
// AAA
#define INCLUDE_SUB
#include __FILE__
#else // INCLUDE_LIBRARY
// #define REACTIVE
// #define USE_GETLINE
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); if( exec_mode == sample_debug_mode ||
    exec_mode == submission_debug_mode || exec_mode == library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment();
    return 0; } else if( exec_mode == small_test_mode ){ SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) );
    int test_case_num = 1; if( exec_mode == solve_mode ){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 ,
    bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "" ); SET_LL(
    test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )
      ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode
      ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); }
#define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' )
#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
#define COUT( ... ) VariadicCout( cout << " " , __VA_ARGS__ ) << endl
#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
#define COUT_A( A , N ) cout << " "; OUTPUT_ARRAY( cout , A , N ) << endl
#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
#define COUT_ITR( A ) cout << " "; OUTPUT_ITR( cout , A ) << endl
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1
      ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )
#define SOLVE_ONLY
#define CERR( ... )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
#define CERR_A( A , N )
#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL
#define CERR_ITR( A )
#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL
#endif
#ifdef REACTIVE
#define ENDL endl
#else
#define ENDL "\n"
#endif
#ifdef USE_GETLINE
#define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A_str ); }
#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#else
#define SET_LL( A ) cin >> A
#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
#define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }
#define CIN_A( LL , A , N ) vector<LL> A( N ); SET_A( A , N );
#endif
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
template <typename INT> using T2 = pair<INT,INT>;
template <typename INT> using T3 = tuple<INT,INT,INT>;
template <typename INT> using T4 = tuple<INT,INT,INT,INT>;
using path = pair<int,ll>;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" );
    } Solve(); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?""
    :" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR =
    ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =
    ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( #__VA_ARGS__ , ":"
    , naive , match ? "==" : "!=" , answer ); if( !match ){ return; }
//
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg ,
    ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const
    char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }
template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os
    << arg; }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits
    >& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }
//
template <typename T> constexpr T PositiveBaseResidue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
template <typename T> constexpr T Residue( const T& a , const T& p ){ return PositiveBaseResidue( a , p < 0 ? -p : p ); }
template <typename T> constexpr T PositiveBaseQuotient( const T& a , const T& p ){ return ( a - PositiveBaseResidue( a , p ) ) / p; }
template <typename T> constexpr T Quotient( const T& a , const T& p ){ return p < 0 ? PositiveBaseQuotient( -a , -p ) : PositiveBaseQuotient( a , p
    ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \
ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
ll ANSWER[CONSTEXPR_LENGTH]; \
ll ANSWER_INV[CONSTEXPR_LENGTH]; \
ll INVERSE[CONSTEXPR_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= CONST_TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CONST_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER
    ) \
static_assert( ! is_same<TYPE_OF( CONST_TARGET ),uint>::value && ! is_same<TYPE_OF( CONST_TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
{ \
ll L_BS = MINIMUM; \
ll U_BS = MAXIMUM; \
ANSWER = UPDATE_ANSWER; \
ll EXPRESSION_BS; \
const ll CONST_TARGET_BS = ( CONST_TARGET ); \
ll DIFFERENCE_BS; \
while( L_BS < U_BS ){ \
DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CONST_TARGET_BS; \
CERR( "" , "L_BS =" , L_BS , "<=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "-" , #CONST_TARGET , "=" , EXPRESSION_BS , "-"
        , CONST_TARGET_BS , "=" , DIFFERENCE_BS ); \
if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \
U_BS = UPDATE_U; \
} else { \
L_BS = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
if( L_BS > U_BS ){ \
CERR( "" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "" ); \
ANSWER = MAXIMUM + 1; \
} else { \
CERR( "" , "L_BS =" , L_BS , "<=" , ANSWER , "<=" , U_BS , "= U_BS" ); \
CERR( "" , #EXPRESSION , "" ); \
CERR( "" ); \
EXPRESSION_BS = ( EXPRESSION ); \
CERR( "" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CONST_TARGET_BS ? ">" : EXPRESSION_BS < CONST_TARGET_BS ? "<" : "
        =" ) , CONST_TARGET_BS ); \
if( EXPRESSION_BS DESIRED_INEQUALITY CONST_TARGET_BS ){ \
CERR( "" , #ANSWER , ":=" , ANSWER ); \
} else { \
CERR( "" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "調調調" ); \
ANSWER = MAXIMUM + 1; \
} \
} \
} \
// 調EXPRESSION >= CONST_TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \
// 調EXPRESSION <= CONST_TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \
// 調EXPRESSION >= CONST_TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \
// 調EXPRESSION <= CONST_TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;
    } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; }
    auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }
//
template <typename T> inline T Add( const T& t0 , const T& t1 ) { return t0 + t1; }
template <typename T> inline T XorAdd( const T& t0 , const T& t1 ){ return t0 ^ t1; }
template <typename T> inline T Multiply( const T& t0 , const T& t1 ) { return t0 * t1; }
template <typename T> inline const T& Zero() { static const T z = 0; return z; }
template <typename T> inline const T& One() { static const T o = 1; return o; }\
template <typename T> inline T AddInv( const T& t ) { return -t; }
template <typename T> inline T Id( const T& v ) { return v; }
template <typename T> inline T Min( const T& a , const T& b ){ return a < b ? a : b; }
template <typename T> inline T Max( const T& a , const T& b ){ return a < b ? b : a; }
//
int H , W , H_minus , W_minus , HW;
vector<vector<bool> > non_wall;
inline T2<int> EnumHW( const int& v ) { return { v / W , v % W }; }
inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }
const string direction[4] = {"U","R","D","L"};
// (i,j)->(k,h)
inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}
// v->w
inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}
// U<->DR<->L
inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v =
    EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v
    );}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<path> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const
    int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1
    )].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}
inline void SetWallOnGrid( const string& Si , const int& i , vector<vector<bool> >& non_wall , const char& walkable = '.' , const char& unwalkable =
    '#' ){non_wall.push_back(vector<bool>(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable
    ),false);}}
//
template <typename PATH> vector<list<PATH> > e;
template <typename T> map<T,T> f;
template <typename T> vector<T> g;
//
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR(
      "abortassert" ); }
void AutoCheck( int& exec_mode , const bool& use_getline );
inline void Solve();
inline void Experiment();
inline void SmallTest();
inline void RandomTest();
ll GetRand( const ll& Rand_min , const ll& Rand_max );
int exec_mode;
CEXPR( int , solve_mode , 0 );
CEXPR( int , sample_debug_mode , 1 );
CEXPR( int , submission_debug_mode , 2 );
CEXPR( int , library_search_mode , 3 );
CEXPR( int , experiment_mode , 4 );
CEXPR( int , small_test_mode , 5 );
CEXPR( int , random_test_mode , 6 );
#ifdef USE_GETLINE
CEXPR( bool , use_getline , true );
#else
CEXPR( bool , use_getline , false );
#endif
#endif
//
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
// VVV
// ConstexprModulo
// c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/a.hpp
CEXPR(uint,P,998244353);TE <uint M,TY INT> CE INT& RS(INT& n)NE{RE n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n %= M;}TE <uint M> CE uint& RS(uint& n
    )NE{RE n %= M;}TE <uint M> CE ull& RS(ull& n)NE{RE n %= M;}TE <TY INT> CE INT& RSP(INT& n)NE{CE CO uint trunc = (1 << 23)- 1;INT n_u = n >> 23;n
    &= trunc;INT n_uq = (n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;}TE <> CE ull& RS<P,ull>(ull& n)NE{CE CO
    ull Pull = P;CE CO ull Pull2 = (Pull - 1)* (Pull - 1);RE RSP(n > Pull2?n -= Pull2:n);}TE <uint M,TY INT> CE INT RS(INT&& n)NE{RE MO(RS<M>(n));}TE
    <uint M,TY INT> CE INT RS(CO INT& n)NE{RE RS<M>(INT(n));}
#define SFINAE_FOR_MOD(DEFAULT)TY T,enable_if_t<is_constructible<uint,decay_t<T> >::value>* DEFAULT
#define DC_OF_CM_FOR_MOD(FUNC)CE bool OP FUNC(CO Mod<M>& n)CO NE
#define DC_OF_AR_FOR_MOD(FUNC)CE Mod<M> OP FUNC(CO Mod<M>& n)CO NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod<M> OP FUNC(T&& n)CO NE;
#define DF_OF_CM_FOR_MOD(FUNC)TE <uint M> CE bool Mod<M>::OP FUNC(CO Mod<M>& n)CO NE{RE m_n FUNC n.m_n;}
#define DF_OF_AR_FOR_MOD(FUNC,FORMULA)TE <uint M> CE Mod<M> Mod<M>::OP FUNC(CO Mod<M>& n)CO NE{RE MO(Mod<M>(*TH)FUNC ## = n);}TE <uint M> TE
    <SFINAE_FOR_MOD()> CE Mod<M> Mod<M>::OP FUNC(T&& n)CO NE{RE FORMULA;}TE <uint M,SFINAE_FOR_MOD(= nullptr)> CE Mod<M> OP FUNC(T&& n0,CO Mod<M>& n1
    )NE{RE MO(Mod<M>(forward<T>(n0))FUNC ## = n1);}
TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(CO T&
    n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(T& n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(T&& n)NE;CE Mod<M>& OP=(CO Mod<M>& n)NE;CE Mod<M>& OP
    =(Mod<M>&& n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(CO Mod<M>& n);CE
    Mod<M>& OP<<=(int n)NE;CE Mod<M>& OP>>=(int n)NE;CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE
    ;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD
    (+);DC_OF_AR_FOR_MOD(-);DC_OF_AR_FOR_MOD(*);DC_OF_AR_FOR_MOD(/);CE Mod<M> OP<<(int n)CO NE;CE Mod<M> OP>>(int n)CO NE;CE Mod<M> OP-()CO NE;CE Mod
    <M>& SignInvert()NE;CE Mod<M>& Double()NE;CE Mod<M>& Halve()NE;IN Mod<M>& Invert();TE <TY T> CE Mod<M>& PositivePW(T&& EX)NE;TE <TY T> CE Mod<M>&
    NonNegativePW(T&& EX)NE;TE <TY T> CE Mod<M>& PW(T&& EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(CRUI n)NE;ST CE uint&
    Normalise(uint& n)NE;ST IN CO Mod<M>& Inverse(CRUI n)NE;ST IN CO Mod<M>& Factorial(CRUI n)NE;ST IN CO Mod<M>& FactorialInverse(CRUI n)NE;ST IN
    Mod<M> Combination(CRUI n,CRUI i)NE;ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY T> CE Mod<M>& Ref(T&& n)NE;};
#define SFINAE_FOR_MN(DEFAULT)TY T,enable_if_t<is_constructible<Mod<M>,decay_t<T> >::value>* DEFAULT
#define DC_OF_AR_FOR_MN(FUNC)IN MN<M> OP FUNC(CO MN<M>& n)CO NE;TE <SFINAE_FOR_MOD(= nullptr)> IN MN<M> OP FUNC(T&& n)CO NE;
#define DF_OF_CM_FOR_MN(FUNC)TE <uint M> IN bool MN<M>::OP FUNC(CO MN<M>& n)CO NE{RE m_n FUNC n.m_n;}
#define DF_OF_AR_FOR_MN(FUNC,FORMULA)TE <uint M> IN MN<M> MN<M>::OP FUNC(CO MN<M>& n)CO NE{RE MO(MN<M>(*TH)FUNC ## = n);}TE <uint M> TE
    <SFINAE_FOR_MOD()> IN MN<M> MN<M>::OP FUNC(T&& n)CO NE{RE FORMULA;}TE <uint M,SFINAE_FOR_MOD(= nullptr)> IN MN<M> OP FUNC(T&& n0,CO MN<M>& n1
    )NE{RE MO(MN<M>(forward<T>(n0))FUNC ## = n1);}
TE <uint M>CL MN:PU Mod<M>{PU:CE MN()NE;CE MN(CO MN<M>& n)NE;CE MN(MN<M>& n)NE;CE MN(MN<M>&& n)NE;TE <SFINAE_FOR_MN(= nullptr)> CE MN(CO T& n)NE;TE
    <SFINAE_FOR_MN(= nullptr)> CE MN(T&& n)NE;CE MN<M>& OP=(CO MN<M>& n)NE;CE MN<M>& OP=(MN<M>&& n)NE;CE MN<M>& OP+=(CO MN<M>& n)NE;CE MN<M>& OP-=(CO
    MN<M>& n)NE;CE MN<M>& OP*=(CO MN<M>& n)NE;IN MN<M>& OP/=(CO MN<M>& n);CE MN<M>& OP<<=(int n)NE;CE MN<M>& OP>>=(int n)NE;CE MN<M>& OP++()NE;CE MN
    <M> OP++(int)NE;CE MN<M>& OP--()NE;CE MN<M> OP--(int)NE;DC_OF_AR_FOR_MN(+);DC_OF_AR_FOR_MN(-);DC_OF_AR_FOR_MN(*);DC_OF_AR_FOR_MN(/);CE MN<M> OP
    <<(int n)CO NE;CE MN<M> OP>>(int n)CO NE;CE MN<M> OP-()CO NE;CE MN<M>& SignInvert()NE;CE MN<M>& Double()NE;CE MN<M>& Halve()NE;CE MN<M>& Invert
    ();TE <TY T> CE MN<M>& PositivePW(T&& EX)NE;TE <TY T> CE MN<M>& NonNegativePW(T&& EX)NE;TE <TY T> CE MN<M>& PW(T&& EX);CE uint RP()CO NE;CE Mod<M
    > Reduce()CO NE;ST CE MN<M> DeRP(CRUI n)NE;ST IN CO MN<M>& Formise(CRUI n)NE;ST IN CO MN<M>& Inverse(CRUI n)NE;ST IN CO MN<M>& Factorial(CRUI n
    )NE;ST IN CO MN<M>& FactorialInverse(CRUI n)NE;ST IN MN<M> Combination(CRUI n,CRUI i)NE;ST IN CO MN<M>& zero()NE;ST IN CO MN<M>& one()NE;ST CE
    uint Form(CRUI n)NE;ST CE ull& Reduction(ull& n)NE;ST CE ull& ReducedMU(ull& n,CRUI m)NE;ST CE uint MU(CRUI n0,CRUI n1)NE;ST CE uint
    BaseSquareTruncation(uint& n)NE;TE <TY T> CE MN<M>& Ref(T&& n)NE;};TE <uint M> CE MN<M> Twice(CO MN<M>& n)NE;TE <uint M> CE MN<M> Half(CO MN<M>&
    n)NE;TE <uint M> CE MN<M> Inverse(CO MN<M>& n);TE <uint M,TY T> CE MN<M> PW(MN<M> n,T EX);TE <TY T> CE MN<2> PW(CO MN<2>& n,CO T& p);TE <TY T> CE
    T Square(CO T& t);TE <> CE MN<2> Square<MN<2> >(CO MN<2>& t);TE <uint M> CE VO swap(MN<M>& n0,MN<M>& n1)NE;TE <uint M> IN string to_string(CO MN
    <M>& n)NE;TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO MN<M>& n);
TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO bool g_even = ((M & 1)== 0);ST CE CO uint g_memory_bound = 1000000;ST CE CO uint
    g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE ull MNBasePW(ull&& EX)NE;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST
    CE uint g_M_minus_2_neg = 2 - M;ST CE CO int g_MN_digit = 32;ST CE CO ull g_MN_base = ull(1)<< g_MN_digit;ST CE CO uint g_MN_base_minus = uint
    (g_MN_base - 1);ST CE CO uint g_MN_digit_half = (g_MN_digit + 1)>> 1;ST CE CO uint g_MN_base_sqrt_minus = (1 << g_MN_digit_half)- 1;ST CE CO uint
    g_MN_M_neg_inverse = uint((g_MN_base - MNBasePW((ull(1)<< (g_MN_digit - 1))- 1))& g_MN_base_minus);ST CE CO uint g_MN_base_mod = uint(g_MN_base %
    M);ST CE CO uint g_MN_base_square_mod = uint(((g_MN_base % M)* (g_MN_base % M))% M);};TE <uint M> CE ull COantsForMod<M>::MNBasePW(ull&& EX
    )NE{ull prod = 1;ull PW = M;WH(EX != 0){(EX & 1)== 1?(prod *= PW)&= g_MN_base_minus:prod;EX >>= 1;(PW *= PW)&= g_MN_base_minus;}RE prod;}
US MP = Mod<P>;US MNP = MN<P>;TE <uint M> CE uint MN<M>::Form(CRUI n)NE{ull n_copy = n;RE uint(MO(Reduction(n_copy *= COantsForMod<M
    >::g_MN_base_square_mod)));}TE <uint M> CE ull& MN<M>::Reduction(ull& n)NE{ull n_sub = n & COantsForMod<M>::g_MN_base_minus;RE ((n += ((n_sub *=
    COantsForMod<M>::g_MN_M_neg_inverse)&= COantsForMod<M>::g_MN_base_minus)*= M)>>= COantsForMod<M>::g_MN_digit)< M?n:n -= M;}TE <uint M> CE ull& MN
    <M>::ReducedMU(ull& n,CRUI m)NE{RE Reduction(n *= m);}TE <uint M> CE uint MN<M>::MU(CRUI n0,CRUI n1)NE{ull n0_copy = n0;RE uint(MO(ReducedMU
    (ReducedMU(n0_copy,n1),COantsForMod<M>::g_MN_base_square_mod)));}TE <uint M> CE uint MN<M>::BaseSquareTruncation(uint& n)NE{CO uint n_u = n >>
    COantsForMod<M>::g_MN_digit_half;n &= COantsForMod<M>::g_MN_base_sqrt_minus;RE n_u;}TE <uint M> CE MN<M>::MN()NE:Mod<M>(){static_assert(!
    COantsForMod<M>::g_even);}TE <uint M> CE MN<M>::MN(CO MN<M>& n)NE:Mod<M>(n){}TE <uint M> CE MN<M>::MN(MN<M>& n)NE:Mod<M>(n){}TE <uint M> CE MN<M
    >::MN(MN<M>&& n)NE:Mod<M>(MO(n)){}TE <uint M> TE <SFINAE_FOR_MN()> CE MN<M>::MN(CO T& n)NE:Mod<M>(n){static_assert(! COantsForMod<M>::g_even);Mod
    <M>::m_n = Form(Mod<M>::m_n);}TE <uint M> TE <SFINAE_FOR_MN()> CE MN<M>::MN(T&& n)NE:Mod<M>(forward<T>(n)){static_assert(! COantsForMod<M
    >::g_even);Mod<M>::m_n = Form(Mod<M>::m_n);}TE <uint M> CE MN<M>& MN<M>::OP=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP=(n));}TE <uint M> CE MN<M>& MN<M
    >::OP=(MN<M>&& n)NE{RE Ref(Mod<M>::OP=(MO(n)));}TE <uint M> CE MN<M>& MN<M>::OP+=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP+=(n));}TE <uint M> CE MN<M>&
    MN<M>::OP-=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP-=(n));}TE <uint M> CE MN<M>& MN<M>::OP*=(CO MN<M>& n)NE{ull m_n_copy = Mod<M>::m_n;RE Ref(Mod<M
    >::m_n = MO(ReducedMU(m_n_copy,n.m_n)));}TE <uint M> IN MN<M>& MN<M>::OP/=(CO MN<M>& n){RE OP*=(MN<M>(n).Invert());}TE <uint M> CE MN<M>& MN<M
    >::OP<<=(int n)NE{RE Ref(Mod<M>::OP<<=(n));}TE <uint M> CE MN<M>& MN<M>::OP>>=(int n)NE{RE Ref(Mod<M>::OP>>=(n));}TE <uint M> CE MN<M>& MN<M>::OP
    ++()NE{RE Ref(Mod<M>::Normalise(Mod<M>::m_n += COantsForMod<M>::g_MN_base_mod));}TE <uint M> CE MN<M> MN<M>::OP++(int)NE{MN<M> n{*TH};OP++();RE n
    ;}TE <uint M> CE MN<M>& MN<M>::OP--()NE{RE Ref(Mod<M>::m_n < COantsForMod<M>::g_MN_base_mod?((Mod<M>::m_n += M)-= COantsForMod<M>::g_MN_base_mod
    ):Mod<M>::m_n -= COantsForMod<M>::g_MN_base_mod);}TE <uint M> CE MN<M> MN<M>::OP--(int)NE{MN<M> n{*TH};OP--();RE n;}DF_OF_AR_FOR_MN(+,MN<M
    >(forward<T>(n))+= *TH);DF_OF_AR_FOR_MN(-,MN<M>(forward<T>(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MN(*,MN<M>(forward<T>(n))*= *TH);DF_OF_AR_FOR_MN
    (/,MN<M>(forward<T>(n)).Invert()*= *TH);TE <uint M> CE MN<M> MN<M>::OP<<(int n)CO NE{RE MO(MN<M>(*TH)<<= n);}TE <uint M> CE MN<M> MN<M>::OP>>(int
    n)CO NE{RE MO(MN<M>(*TH)>>= n);}TE <uint M> CE MN<M> MN<M>::OP-()CO NE{RE MO(MN<M>(*TH).SignInvert());}TE <uint M> CE MN<M>& MN<M>::SignInvert
    ()NE{RE Ref(Mod<M>::m_n > 0?Mod<M>::m_n = M - Mod<M>::m_n:Mod<M>::m_n);}TE <uint M> CE MN<M>& MN<M>::Double()NE{RE Ref(Mod<M>::Double());}TE
    <uint M> CE MN<M>& MN<M>::Halve()NE{RE Ref(Mod<M>::Halve());}TE <uint M> CE MN<M>& MN<M>::Invert(){assert(Mod<M>::m_n > 0);RE PositivePW(uint
    (COantsForMod<M>::g_M_minus_2));}TE <uint M> TE <TY T> CE MN<M>& MN<M>::PositivePW(T&& EX)NE{MN<M> PW{*TH};(--EX)%= COantsForMod<M>::g_M_minus_2
    ;WH(EX != 0){(EX & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY T> CE MN<M>& MN<M>::NonNegativePW(T&& EX)NE{RE EX == 0?Ref
    (Mod<M>::m_n = COantsForMod<M>::g_MN_base_mod):PositivePW(forward<T>(EX));}TE <uint M> TE <TY T> CE MN<M>& MN<M>::PW(T&& EX){bool neg = EX < 0
    ;assert(!(neg && Mod<M>::m_n == 0));RE neg?PositivePW(forward<T>(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW(forward<T>(EX));}TE <uint
    M> CE uint MN<M>::RP()CO NE{ull m_n_copy = Mod<M>::m_n;RE MO(Reduction(m_n_copy));}TE <uint M> CE Mod<M> MN<M>::Reduce()CO NE{ull m_n_copy = Mod
    <M>::m_n;RE Mod<M>::DeRP(MO(Reduction(m_n_copy)));}TE <uint M> CE MN<M> MN<M>::DeRP(CRUI n)NE{RE MN<M>(Mod<M>::DeRP(n));}TE <uint M> IN CO MN<M>&
    MN<M>::Formise(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] =
    DeRP(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::Inverse(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={zero
    (),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M>(Mod<M>::Inverse(LE_curr));LE_curr++;}RE memory[n];}TE <uint M> IN CO MN<M
    >& MN<M>::Factorial(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN<M> val_curr{one()};ST MN<M>
    val_last{one()};WH(LE_curr <= n){memory[LE_curr++] = val_curr *= ++val_last;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::FactorialInverse(CRUI
    n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN<M> val_curr{one()};ST MN<M> val_last{one()};WH
    (LE_curr <= n){memory[LE_curr] = val_curr *= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN MN<M> MN<M>::Combination(CRUI n,CRUI i
    )NE{RE i <= n?Factorial(n)*FactorialInverse(i)*FactorialInverse(n - i):zero();}TE <uint M> IN CO MN<M>& MN<M>::zero()NE{ST CE CO MN<M> z{};RE z
    ;}TE <uint M> IN CO MN<M>& MN<M>::one()NE{ST CE CO MN<M> o{DeRP(1)};RE o;}TE <uint M> TE <TY T> CE MN<M>& MN<M>::Ref(T&& n)NE{RE *TH;}TE <uint M>
    CE MN<M> Twice(CO MN<M>& n)NE{RE MO(MN<M>(n).Double());}TE <uint M> CE MN<M> Half(CO MN<M>& n)NE{RE MO(MN<M>(n).Halve());}TE <uint M> CE MN<M>
    Inverse(CO MN<M>& n){RE MO(MN<M>(n).Invert());}TE <uint M,TY T> CE MN<M> PW(MN<M> n,T EX){RE MO(n.PW(EX));}TE <uint M> CE VO swap(MN<M>& n0,MN<M
    >& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO MN<M>& n)NE{RE to_string(n.RP())+ " + MZ";}TE<uint M,CL Traits> IN basic_ostream<char
    ,Traits>& OP<<(basic_ostream<char,Traits>& os,CO MN<M>& n){RE os << n.RP();}
TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>& n)NE:m_n(n.m_n){}TE
    <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M>::Mod(CO T& n)NE:m_n(RS<M>(n)){}TE <uint M> TE
    <SFINAE_FOR_MOD()> CE Mod<M>::Mod(T& n)NE:m_n(RS<M>(decay_t<T>(n))){}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M>::Mod(T&& n)NE:m_n(RS<M>(forward
    <T>(n))){}TE <uint M> CE Mod<M>& Mod<M>::OP=(CO Mod<M>& n)NE{RE Ref(m_n = n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M>&& n)NE{RE Ref(m_n =
    MO(n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n
    )NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{RE Ref(m_n = COantsForMod<M>::g_even
    ?RS<M>(ull(m_n)* n.m_n):MN<M>::MU(m_n,n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P
    ?m_n_copy:RSP(m_n_copy)));}TE <uint M> IN Mod<M>& Mod<M>::OP/=(CO Mod<M>& n){RE OP*=(Mod<M>(n).Invert());}TE <uint M> CE Mod<M>& Mod<M>::OP
    <<=(int n)NE{WH(n-- > 0){Normalise(m_n <<= 1);}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP>>=(int n)NE{WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>=
    1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{RE Ref(m_n < COantsForMod<M>::g_M_minus?++m_n:m_n = 0);}TE <uint M> CE Mod<M> Mod<M>::OP++(int
    )NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod<M>::g_M_minus:--m_n);}TE <uint M> CE
    Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD
    (>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,Mod<M>(forward<T>(n))+= *TH);DF_OF_AR_FOR_MOD(-,Mod<M>(forward<T>(n)).SignInvert
    ()+= *TH);DF_OF_AR_FOR_MOD(*,Mod<M>(forward<T>(n))*= *TH);DF_OF_AR_FOR_MOD(/,Mod<M>(forward<T>(n)).Invert()*= *TH);TE <uint M> CE Mod<M> Mod<M
    >::OP<<(int n)CO NE{RE MO(Mod<M>(*TH)<<= n);}TE <uint M> CE Mod<M> Mod<M>::OP>>(int n)CO NE{RE MO(Mod<M>(*TH)>>= n);}TE <uint M> CE Mod<M> Mod<M
    >::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE <uint M> CE
    Mod<M>& Mod<M>::Double()NE{RE Ref(Normalise(m_n <<= 1));}TE <uint M> CE Mod<M>& Mod<M>::Halve()NE{RE Ref(((m_n & 1)== 0?m_n:m_n += M)>>= 1);}TE
    <uint M> IN Mod<M>& Mod<M>::Invert(){assert(m_n > 0);uint m_n_neg;RE m_n < COantsForMod<M>::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):(m_n_neg = M
    - m_n < COantsForMod<M>::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod<M>::g_M_minus_2));}TE <> IN Mod<2>& Mod<2
    >::Invert(){assert(m_n > 0);RE *TH;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::PositivePW(T&& EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?OP
    *=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <> TE <TY T> CE Mod<2>& Mod<2>::PositivePW(T&& EX)NE{RE *TH;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M
    >::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(forward<T>(EX)));}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::PW(T&& EX){bool neg
    = EX < 0;assert(!(neg && m_n == 0));neg?EX *= COantsForMod<M>::g_M_minus_2_neg:EX;RE m_n == 0?*TH:(EX %= COantsForMod<M>::g_M_minus)== 0?Ref(m_n
    = 1):PositivePW(forward<T>(EX));}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one
    ()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - MN<M>::MU(memory[M % LE_curr].m_n,M / LE_curr);LE_curr++;}RE memory[n];}TE
    <uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr
    <= n){memory[LE_curr] = MN<M>::Factorial(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n
    )NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M>::FactorialInverse
    (LE_curr).Reduce();LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i)NE{RE MN<M>::Combination(n,i).Reduce();}TE
    <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP
    (CRUI n)NE{Mod<M> n_copy{};n_copy.m_n = n;RE n_copy;}TE <uint M> CE uint& Mod<M>::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE <uint M> IN CO Mod<M
    >& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{DeRP(1)};RE o;}TE <uint M> TE <TY T> CE
    Mod<M>& Mod<M>::Ref(T&& n)NE{RE *TH;}TE <uint M> CE Mod<M> Twice(CO Mod<M>& n)NE{RE MO(Mod<M>(n).Double());}TE <uint M> CE Mod<M> Half(CO Mod<M>&
    n)NE{RE MO(Mod<M>(n).Halve());}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M> CE Mod<M> Inverse_COrexpr(CRUI
    n)NE{RE MO(Mod<M>::DeRP(RS<M>(n)).NonNegativePW(M - 2));}TE <uint M,TY T> CE Mod<M> PW(Mod<M> n,T EX){RE MO(n.PW(EX));}TE <TY T>CE Mod<2> PW(Mod
    <2> n,const T& p){RE p == 0?Mod<2>::one():move(n);}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string
    (CO Mod<M>& n)NE{RE to_string(n.RP())+ " + MZ";}TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M
    >& n){RE os << n.RP();}
// IntervalAddBIT
// c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/a.hpp
TE<int N>CL PWInverse_CE{PU:int m_val;CE PWInverse_CE();};
TE<int N>CE PWInverse_CE<N>::PWInverse_CE():m_val(1){WH(m_val < N){m_val <<= 1;}}
TE <TY T,int N>CL BIT{PU:T m_fenwick[N + 1];IN BIT();BIT(CO T(&a)[N]);IN T Get(CRI i)CO;IN VO Set(CRI i,CO T& n);IN VO Set(CO T(&a)[N]);IN VO
    Initialise();IN BIT<T,N>& OP+=(CO T(&a)[N]);VO Add(CRI i,CO T& n);T InitialSegmentSum(CRI i_final)CO;IN T IntervalSum(CRI i_start,CRI i_final)CO
    ;int BinarySearch(CO T& n)CO;IN int BinarySearch(CRI i_start,CO T& n)CO;};
TE <TY T,int N> IN BIT<T,N>::BIT():m_fenwick(){static_assert(! is_same<T,int>::value);}TE <TY T,int N>BIT<T,N>::BIT(CO T(&a)[N]):m_fenwick
    (){static_assert(! is_same<T,int>::value);for(int j = 1;j <= N;j++){T& fenwick_j = m_fenwick[j];int i = j - 1;fenwick_j = a[i];int i_lim = j -(j
    & -j);WH(i != i_lim){fenwick_j += m_fenwick[i];i -=(i & -i);}}}TE <TY T,int N> IN T BIT<T,N>::Get(CRI i)CO{RE IntervalSum(i,i);}TE <TY T,int N>
    IN VO BIT<T,N>::Set(CRI i,CO T& n){Add(i,n - IntervalSum(i,i));}TE <TY T,int N> IN VO BIT<T,N>::Set(CO T(&a)[N]){BIT<T,N> a_copy{a};swap
    (m_fenwick,a_copy.m_fenwick);}TE <TY T,int N> IN VO BIT<T,N>::Initialise(){for(int j = 1;j <= N;j++){m_fenwick[j] = 0;}}TE <TY T,int N> IN BIT<T
    ,N>& BIT<T,N>::OP+=(CO T(&a)[N]){for(int i = 0;i < N;i++){Add(i,a[i]);}RE *TH;}TE <TY T,int N>VO BIT<T,N>::Add(CRI i,CO T& n){int j = i + 1;WH(j
    <= N){m_fenwick[j] += n;j +=(j & -j);}RE;}TE <TY T,int N>T BIT<T,N>::InitialSegmentSum(CRI i_final)CO{T sum = 0;int j =(i_final < N?i_final:N - 1
    )+ 1;WH(j > 0){sum += m_fenwick[j];j -= j & -j;}RE sum;}TE <TY T,int N> IN T BIT<T,N>::IntervalSum(CRI i_start,CRI i_final)CO{RE
    InitialSegmentSum(i_final)- InitialSegmentSum(i_start - 1);}TE <TY T,int N>int BIT<T,N>::BinarySearch(CO T& n)CO{int j = 0;int PW = PWInverse_CE
    <N>().m_val;T sum{};T sum_next{};WH(PW > 0){int j_next = j | PW;if(j_next < N){sum_next += m_fenwick[j_next];if(sum_next < n){sum = sum_next;j =
    j_next;}else{sum_next = sum;}}PW >>= 1;}RE j;}TE <TY T,int N> IN int BIT<T,N>::BinarySearch(CRI i_start,CO T& n)CO{RE max(i_start,BinarySearch
    (InitialSegmentSum(i_start)+ n));}
TE <TY T,int N>CL IntervalAddBIT{PU:BIT<T,N> m_bit_0;BIT<T,N> m_bit_1;IN IntervalAddBIT();IN IntervalAddBIT(CO T(&a)[N]);IN T Get(CRI i)CO;IN VO Set
    (CRI i,CO T& n);IN VO Set(CO T(&a)[N]);IN VO Initialise();IN IntervalAddBIT<T,N>& OP+=(CO T(&a)[N]);IN VO Add(CRI i,CO T& n);IN VO IntervalAdd
    (CRI i_start,CRI i_final,CO T& n);IN T InitialSegmentSum(CRI i_final)CO;IN T IntervalSum(CRI i_start,CRI i_final)CO;};
TE <TY T,int N> IN IntervalAddBIT<T,N>::IntervalAddBIT():m_bit_0(),m_bit_1(){}TE <TY T,int N> IN IntervalAddBIT<T,N>::IntervalAddBIT(CO T(&a)[N]
    ):m_bit_0(),m_bit_1(){OP+=(a);}TE <TY T,int N> IN T IntervalAddBIT<T,N>::Get(CRI i)CO{RE IntervalSum(i,i);}TE <TY T,int N> IN VO IntervalAddBIT<T
    ,N>::Set(CRI i,CO T& n){Add(i,n - IntervalSum(i,i));}TE <TY T,int N> IN VO IntervalAddBIT<T,N>::Set(CO T(&a)[N]){IntervalAddBIT<T,N> a_copy{a}
    ;swap(m_bit_0,a_copy.m_bit_0);swap(m_bit_1,a_copy.m_bit_1);}TE <TY T,int N> IN VO IntervalAddBIT<T,N>::Initialise(){m_bit_0.Initialise();m_bit_1
    .Initialise();}TE <TY T,int N> IN IntervalAddBIT<T,N>& IntervalAddBIT<T,N>::OP+=(CO T(&a)[N]){for(int i = 0;i < N;i++){Add(i,a[i]);}RE *TH;}TE
    <TY T,int N> IN VO IntervalAddBIT<T,N>::Add(CRI i,CO T& n){IntervalAdd(i,i,n);}TE <TY T,int N> IN VO IntervalAddBIT<T,N>::IntervalAdd(CRI i_start
    ,CRI i_final,CO T& n){m_bit_0.Add(i_start,-(i_start - 1)* n);m_bit_0.Add(i_final + 1,i_final * n);m_bit_1.Add(i_start,n);m_bit_1.Add(i_final + 1
    ,- n);}TE <TY T,int N> IN T IntervalAddBIT<T,N>::InitialSegmentSum(CRI i_final)CO{RE m_bit_0.InitialSegmentSum(i_final)+ i_final * m_bit_1
    .InitialSegmentSum(i_final);}TE <TY T,int N> IN T IntervalAddBIT<T,N>::IntervalSum(CRI i_start,CRI i_final)CO{RE InitialSegmentSum(i_final)-
    InitialSegmentSum(i_start - 1);}
// AAA
#define INCLUDE_LIBRARY
#include __FILE__
#endif // INCLUDE_LIBRARY
#endif // INCLUDE_SUB
#endif // INCLUDE_MAIN
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0