結果
問題 | No.2572 Midori on the grid |
ユーザー | あべし |
提出日時 | 2023-12-02 16:55:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 198 ms / 5,000 ms |
コード長 | 7,053 bytes |
コンパイル時間 | 2,183 ms |
コンパイル使用メモリ | 205,452 KB |
実行使用メモリ | 6,272 KB |
最終ジャッジ日時 | 2024-09-26 20:53:25 |
合計ジャッジ時間 | 5,928 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 198 ms
6,272 KB |
testcase_01 | AC | 95 ms
5,888 KB |
testcase_02 | AC | 150 ms
5,376 KB |
testcase_03 | AC | 136 ms
5,376 KB |
testcase_04 | AC | 69 ms
5,376 KB |
testcase_05 | AC | 151 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; // macro #define rep(i, N) for(ll i = 0; i < (ll)(N); ++i) #define per(i, N) for(ll i = (ll)(N) - 1; i >= 0; --i) #define all(v) (v).begin(), (v).end() #define rall(v) (v).rbegin(), (v).rend() #define bit(n, k) (((n) >> (k)) & 1) #define pcnt(n) (bitset<64>(n).count()) #define endl '\n' #define fi first #define se second #define mkpr make_pair #define mktpl make_tuple #define eb emplace_back // input/output template<class T> istream& operator>>(istream& is, vector<T>& V){ for(auto& it : V) is >> it; return is; } template<class T> ostream& operator<<(ostream& os, vector<T>& V){ for(int i = 0; i < (int)V.size(); i++){ os << V[i]; os << (i + 1 != (int)V.size() ? " " : ""); } return os; } template<class T1, class T2> istream& operator>>(istream& is, pair<T1, T2>& P){ is >> P.first >> P.second; return is; } template<class T1, class T2> ostream& operator<<(ostream& os, pair<T1, T2> P){ os << P.first << " " << P.second << ""; return os; } // setup void set_fast_ios(size_t precision){ cin.tie(nullptr); ios_base::sync_with_stdio(false); cout << fixed << setprecision(precision); cerr << fixed << setprecision(precision); } // make_vector template <class T> vector<T> make_vector(size_t a, T b) { return vector<T>(a, b); } template <class... Ts> auto make_vector(size_t a, Ts... ts) { return vector<decltype(make_vector(ts...))>(a, make_vector(ts...)); } // debug #ifdef LOCAL #define debug(x) cerr << "line"<< __LINE__ << ": " << #x << " = " << x << '\n' #define debugln() cerr << "line" << __LINE__ << ": passed.\n" #else #define debug(x, ...) void(0) #define debugln() void(0) #endif // type using ll = long long; using ull = unsigned long long; using ld = double; using i128 = __int128_t; using State = string::iterator; using Pair = pair<ll, ll>; using Tuple = tuple<ll, ll, ll>; template<class T> using max_heap = priority_queue<T>; template<class T> using min_heap = priority_queue<T, vector<T>, greater<T>>; template<class T> using vec = vector<T>; template<class T> using vvec = vec<vec<T>>; template<class T> using vvvec = vec<vvec<T>>; // constant constexpr ll INF = 1001001001; constexpr ll LINF = 1001001001001001001ll; constexpr ll MOD998 = 998244353; constexpr ll MOD107 = (ll)(1e9+7); constexpr ll NIL = -1; constexpr ll pm[2] = {1, -1}; constexpr ll dy[4] = {0, 1, 0, -1}; constexpr ll dx[4] = {1, 0, -1, 0}; constexpr ll dy8[8] = {0, 1, 1, 1, 0, -1, -1, -1}; constexpr ll dx8[8] = {1, 1, 0, -1, -1, -1, 0, 1}; // function ll Gcd(ll a, ll b){ return b ? Gcd(b, a % b) : abs(a);} ll Lcm(ll a, ll b){ return a / Gcd(a, b) * b;} template<class T> T powi(T x, ll exp){ return exp > 0 ? (exp & 1 ? x : 1) * powi(x * x, exp >> 1) : x / x; } ll modpow(ll x, ll exp, ll mod){ x %= mod; return exp > 0 ? (exp & 1 ? x : 1) * modpow(x * x, exp >> 1, mod) % mod : 1; } template<class T> bool chmin(T &a, T b){ return a > b ? (a = b, true) : 0;} template<class T> bool chmax(T &a, T b){ return a < b ? (a = b, true) : 0;} // modint template <int mod> struct modint{ long long x; modint() : x(0) {} modint(long long _x){ x = _x % mod; if(x < 0) x += mod; } constexpr modint operator-() const { return modint(-x); } constexpr modint& operator+=(const modint& a){ if ((x += a.x) >= mod) x -= mod; return *this; } constexpr modint& operator-=(const modint& a){ if ((x += mod - a.x) >= mod) x -= mod; return *this; } constexpr modint& operator*=(const modint& a){ (x *= a.x) %= mod; return *this; } constexpr modint& operator/=(const modint& a){ return (*this) *= a.mpow(mod-2); } constexpr modint operator+(const modint& a) const { return modint(*this) += a; } constexpr modint operator-(const modint& a) const { return modint(*this) -= a; } constexpr modint operator*(const modint& a) const { return modint(*this) *= a; } constexpr modint operator/(const modint& a) const { return modint(*this) /= a; } constexpr bool operator==(const modint& a) const { return (*this).x == a.x; } constexpr bool operator!=(const modint& a) const { return (*this).x != a.x; } constexpr const modint mpow(long long exp) const { modint res(1), x = *this; for(; exp; exp >>= 1){ if(exp & 1) res *= x; x *= x; } return res; } friend istream& operator>>(istream& is, modint& m){ is >> m.x; m = modint<mod>(m.x); return is; } friend ostream& operator<<(ostream& os, const modint& m){ os << m.x; return os; } bool operator<(const modint& a) const { return (*this).x < a.x; } }; constexpr ll MOD = MOD998; using mint = modint<MOD>; class Combination{ int max_val; // (2^n)-2 vector<long long> fact_, invf_; void build(int n){ assert(n < MOD); int prev_val = max_val; while(max_val < n) max_val = (max_val << 1) | 2; max_val = min(max_val, n); fact_.resize(max_val + 1); invf_.resize(max_val + 1); for(int i = prev_val + 1; i <= max_val; i++){ fact_[i] = fact_[i-1] * i % MOD; } invf_[max_val] = 1; for(long long x = fact_[max_val], k = MOD-2; k > 0; k >>= 1){ if(k & 1) invf_[max_val] = invf_[max_val] * x % MOD; x = x * x % MOD; } for(int i = max_val; i > prev_val + 1; i--){ invf_[i-1] = invf_[i] * i % MOD; } } bool check(int n){ if(n < 0) return false; if(n > max_val) build(n); return true; } bool check(int n, int r){ if(n < r || r < 0) return false; if(n > max_val) build(n); return true; } public: Combination() : max_val(0), fact_(1, 1), invf_(1, 1) {} Combination(int N) : max_val(0), fact_(1, 1), invf_(1, 1) {build(N);} long long fact(int n){ if(!check(n)) return 0; return fact_[n]; } long long invf(int n){ if(!check(n)) return 0; return invf_[n]; } long long nPr(int n, int r){ if(!check(n, r)) return 0; return fact_[n] * invf_[n-r] % MOD; } long long nCr(int n, int r){ if(!check(n, r)) return 0; return fact_[n] * invf_[n-r] % MOD * invf_[r] % MOD; } }; int main(){ set_fast_ios(15); int H, W, Q; cin >> H >> W >> Q; swap(H, W); Combination comb(H + W); auto L = [&](int t, int x) -> mint { if(t % 2 != abs(x) % 2) { return 0; } else { return comb.nCr(t, (t + x) / 2); } }; auto low = [&](int t, int x, int l) -> mint { if(x < l) { return 0; } else { return L(t, x) - L(t, x - 2 * (l - 1)); } }; auto high = [&](int t, int x, int u) -> mint { return low(t, -x, -u); }; while(Q--){ int t; cin >> t; if(t > 0){ cout << high(H + W, H - W, t - 1) << endl; } else{ cout << low(H + W, H - W, t + 1) << endl; } } }