結果

問題 No.2571 列辞書順列
ユーザー ecottea
提出日時 2023-12-02 16:56:20
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 370 ms / 3,000 ms
コード長 7,060 bytes
コンパイル時間 4,693 ms
コンパイル使用メモリ 258,228 KB
最終ジャッジ日時 2025-02-18 05:47:12
ジャッジサーバーID
(参考情報)
judge4 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 29
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//O(log n)
/*
* geometric_series(r, n) : O(log n)
* Σi∈[0..n) r^i
*
* geometric_series(r, i0, i1) : O(log max(i0, i1))
* Σi∈[i0..i1) r^i
*
*
*/
mint geometric_series(mint r, ll n) {
// verify : https://atcoder.jp/contests/arc050/tasks/arc050_c
//
// r-1
// pow2 = r^(2^i), sumpow2 = 1 + r + ... + r^((2^i) - 1)
mint res(0), pow2 = r, sumpow2 = 1;
while (n > 0) {
if (n & 1LL) res = res * pow2 + sumpow2;
sumpow2 = sumpow2 * pow2 + sumpow2;
pow2 = pow2 * pow2;
n /= 2;
}
return res;
}
mint geometric_series(mint r, ll i0, ll i1) {
return geometric_series(r, i1) - geometric_series(r, i0);
}
using S032 = tuple<mint, mint, int>;
int K, M;
S032 op032(S032 f, S032 g) {
auto [f1, f2, f5] = f;
auto [g1, g2, g5] = g;
if (f5 == -1) return g;
if (g5 == -1) return f;
auto h1 = f1;
h1 += f2 * geometric_series(M, g5);
h1 += g1;
auto h2 = f2 * mint(M).pow(g5);
h2 += g2;
auto h5 = f5 + g5;
return { h1, h2, h5 };
}
S032 e032() { return { 0, 0, -1 }; }
#define NumStr_monoid S032, op032, e032
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, m, k, q;
cin >> n >> m >> k >> q;
vi a(n);
cin >> a;
K = k; M = m;
vector<S032> ini(n);
rep(i, n) ini[i] = { 1, a[i] - 1, 1 };
segtree<NumStr_monoid> seg(ini);
dump(seg);
dump(seg.prod(0, 2));
dump(seg.prod(3, 5));
dump(seg.prod(4, 6));
dump(seg.prod(4, 7));
rep(hoge, q) {
int tp;
cin >> tp;
if (tp == 1) {
int l, r;
cin >> l >> r;
l--;
auto [f1, f2, f5] = seg.prod(l, r);
mint res = f1 + f2;
res += f2 * (geometric_series(M, k - f5 + 1) - 1);
cout << res << endl;
}
else {
int x, y;
cin >> x >> y;
x--;
seg.set(x, { 1, y - 1, 1 });
}
dump(seg);
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0