結果

問題 No.2573 moving up
ユーザー 👑 binap
提出日時 2023-12-02 16:57:41
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 3,624 bytes
コンパイル時間 4,925 ms
コンパイル使用メモリ 271,096 KB
最終ジャッジ日時 2025-02-18 05:48:03
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 1 TLE * 1 -- * 29
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;
typedef long long ll;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef long double ld;
typedef pair<int, int> P;
ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}
template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}
template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return
    os;}
template <typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : ""
    ); return os;}
template<typename T>
struct Edge_Dijkstra{
int from, to;
T cost;
Edge_Dijkstra(int from, int to, T cost) : from(from), to(to), cost(cost) {};
};
template<typename T>
struct Dijkstra{
const T INF = 1001001001001001;
int n, m;
vector<bool> initialized;
vector<Edge_Dijkstra<T>> E;
vector<vector<int>> G;
map<int, vector<T>> dist;
map<int, vector<int>> idx;
Dijkstra(int _n) : n(_n), m(0), initialized(n, false), G(n){}
void add_edge(int from, int to, T cost){
Edge_Dijkstra e(from, to, cost);
E.push_back(e);
G[from].emplace_back(m);
m++;
}
void calc(int s){
initialized[s] = true;
dist[s] = vector<T>(n, INF);
idx[s] = vector<int>(n, -1);
priority_queue<tuple<T, int, int>, vector<tuple<T, int, int>>, greater<tuple<T, int, int>>> pq;
pq.emplace(0, s, -1);
while(pq.size()){
auto [cost, from, index] = pq.top(); pq.pop();
if(dist[s][from] <= cost) continue;
dist[s][from] = cost;
idx[s][from] = index;
for(int index : G[from]){
int to = E[index].to;
T cost_plus = E[index].cost;
if(dist[s][to] <= cost + cost_plus) continue;
pq.emplace(cost + cost_plus, to, index);
}
}
}
int farthest(int s){
if(!initialized[s]) calc(s);
int idx = 0;
rep(i, n) if(dist[s][i] > dist[s][idx]) idx = i;
return idx;
}
T get_dist(int s, int t){
if(!initialized[s]) calc(s);
return dist[s][t];
}
vi restore(int s, int t){
if(!initialized[s]) calc(s);
if(dist[s][t] == INF) return vi(0);
vi res;
while(idx[s][t] != -1){
auto e = E[idx[s][t]];
res.push_back(idx[s][t]);
t = e.from;
}
reverse(res.begin(), res.end());
return res;
}
};
int main(){
int h, w;
cin >> h >> w;
vvi a(h, vi(h + w));
Dijkstra<long long> graph(h * (h + w));
rep(x, h) rep(y, h + w){
int from = x * (h + w) + y;
if(y < h + w - 1){
int to = x * (h + w) + y + 1;
graph.add_edge(from, to, 1);
graph.add_edge(to, from, 1);
}
if(x < h - 1){
int to = (x + 1) * (h + w) + y;
graph.add_edge(from, to, 1);
graph.add_edge(to, from, 1);
}
if(y < h + w - 1 and x < h - 1){
int to = (x + 1) * (h + w) + y + 1;
graph.add_edge(from, to, 1);
graph.add_edge(to, from, 1);
}
}
rep(i, w){
int x, y;
cin >> x >> y;
x--; y--;
a[x][y]++;
}
int cnt = 0;
long long ans = 0;
rep(y, h + w) for(int x = h - 1; x >= 0; x--){
if(a[x][y] > 0){
ans += graph.get_dist(x * (h + w) + y, cnt);
cnt++;
}
}
cout << ans << "\n";
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0