結果
問題 | No.2556 Increasing Matrix |
ユーザー | hitonanode |
提出日時 | 2023-12-02 22:28:31 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 28,769 bytes |
コンパイル時間 | 3,734 ms |
コンパイル使用メモリ | 237,200 KB |
実行使用メモリ | 29,112 KB |
最終ジャッジ日時 | 2024-09-26 21:42:35 |
合計ジャッジ時間 | 26,220 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 8 ms
5,376 KB |
testcase_10 | AC | 4 ms
5,376 KB |
testcase_11 | AC | 6 ms
5,376 KB |
testcase_12 | AC | 4 ms
5,376 KB |
testcase_13 | AC | 17 ms
5,376 KB |
testcase_14 | AC | 42 ms
5,376 KB |
testcase_15 | AC | 37 ms
5,376 KB |
testcase_16 | AC | 29 ms
5,376 KB |
testcase_17 | AC | 53 ms
5,376 KB |
testcase_18 | AC | 3,104 ms
18,716 KB |
testcase_19 | AC | 3,694 ms
22,512 KB |
testcase_20 | AC | 4,293 ms
24,008 KB |
testcase_21 | AC | 2,216 ms
16,560 KB |
testcase_22 | AC | 80 ms
5,376 KB |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <memory> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include <cassert> #include <iostream> #include <set> #include <vector> template <int md> struct ModInt { using lint = long long; constexpr static int mod() { return md; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set<int> fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val_; int val() const noexcept { return val_; } constexpr ModInt() : val_(0) {} constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; } constexpr ModInt(lint v) { _setval(v % md + md); } constexpr explicit operator bool() const { return val_ != 0; } constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val_ + x.val_); } constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val_ - x.val_ + md); } constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.val_ % md); } constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.inv().val() % md); } constexpr ModInt operator-() const { return ModInt()._setval(md - val_); } constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; } constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; } constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; } constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % md + x.val_); } friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % md - x.val_ + md); } friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.val_ % md); } friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.inv().val() % md); } constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; } constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; } constexpr bool operator<(const ModInt &x) const { return val_ < x.val_; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val_; } constexpr ModInt pow(lint n) const { ModInt ans = 1, tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } static constexpr int cache_limit = std::min(md, 1 << 21); static std::vector<ModInt> facs, facinvs, invs; constexpr static void _precalculation(int N) { const int l0 = facs.size(); if (N > md) N = md; if (N <= l0) return; facs.resize(N), facinvs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i; facinvs[N - 1] = facs.back().pow(md - 2); for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1); for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1]; } constexpr ModInt inv() const { if (this->val_ < cache_limit) { if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0}; while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val_]; } else { return this->pow(md - 2); } } constexpr ModInt fac() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val_]; } constexpr ModInt facinv() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facinvs[this->val_]; } constexpr ModInt doublefac() const { lint k = (this->val_ + 1) / 2; return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } constexpr ModInt nCr(int r) const { if (r < 0 or this->val_ < r) return ModInt(0); return this->fac() * (*this - r).facinv() * ModInt(r).facinv(); } constexpr ModInt nPr(int r) const { if (r < 0 or this->val_ < r) return ModInt(0); return this->fac() * (*this - r).facinv(); } static ModInt binom(int n, int r) { static long long bruteforce_times = 0; if (r < 0 or n < r) return ModInt(0); if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r); r = std::min(r, n - r); ModInt ret = ModInt(r).facinv(); for (int i = 0; i < r; ++i) ret *= n - i; bruteforce_times += r; return ret; } // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!) // Complexity: O(sum(ks)) template <class Vec> static ModInt multinomial(const Vec &ks) { ModInt ret{1}; int sum = 0; for (int k : ks) { assert(k >= 0); ret *= ModInt(k).facinv(), sum += k; } return ret * ModInt(sum).fac(); } // Catalan number, C_n = binom(2n, n) / (n + 1) // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ... // https://oeis.org/A000108 // Complexity: O(n) static ModInt catalan(int n) { if (n < 0) return ModInt(0); return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv(); } ModInt sqrt() const { if (val_ == 0) return 0; if (md == 2) return val_; if (pow((md - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val_, md - x.val_)); } }; template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0}; using mint = ModInt<998244353>; // Integer convolution for arbitrary mod // with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class. // We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`. // input: a (size: n), b (size: m) // return: vector (size: n + m - 1) template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner); constexpr int nttprimes[3] = {998244353, 167772161, 469762049}; // Integer FFT (Fast Fourier Transform) for ModInt class // (Also known as Number Theoretic Transform, NTT) // is_inverse: inverse transform // ** Input size must be 2^n ** template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) { int n = a.size(); if (n == 1) return; static const int mod = MODINT::mod(); static const MODINT root = MODINT::get_primitive_root(); assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0); static std::vector<MODINT> w{1}, iw{1}; for (int m = w.size(); m < n / 2; m *= 2) { MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw; w.resize(m * 2), iw.resize(m * 2); for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv; } if (!is_inverse) { for (int m = n; m >>= 1;) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { MODINT x = a[i], y = a[i + m] * w[k]; a[i] = x + y, a[i + m] = x - y; } } } } else { for (int m = 1; m < n; m *= 2) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { MODINT x = a[i], y = a[i + m]; a[i] = x + y, a[i + m] = (x - y) * iw[k]; } } } int n_inv = MODINT(n).inv().val(); for (auto &v : a) v *= n_inv; } } template <int MOD> std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) { int sz = a.size(); assert(a.size() == b.size() and __builtin_popcount(sz) == 1); std::vector<ModInt<MOD>> ap(sz), bp(sz); for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i]; ntt(ap, false); if (a == b) bp = ap; else ntt(bp, false); for (int i = 0; i < sz; i++) ap[i] *= bp[i]; ntt(ap, true); return ap; } long long garner_ntt_(int r0, int r1, int r2, int mod) { using mint2 = ModInt<nttprimes[2]>; static const long long m01 = 1LL * nttprimes[0] * nttprimes[1]; static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val(); static const long long m01_inv_m2 = mint2(m01).inv().val(); int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1]; auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2; return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod; } template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) { if (a.empty() or b.empty()) return {}; int sz = 1, n = a.size(), m = b.size(); while (sz < n + m) sz <<= 1; if (sz <= 16) { std::vector<MODINT> ret(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j]; } return ret; } int mod = MODINT::mod(); if (skip_garner or std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) { a.resize(sz), b.resize(sz); if (a == b) { ntt(a, false); b = a; } else { ntt(a, false), ntt(b, false); } for (int i = 0; i < sz; i++) a[i] *= b[i]; ntt(a, true); a.resize(n + m - 1); } else { std::vector<int> ai(sz), bi(sz); for (int i = 0; i < n; i++) ai[i] = a[i].val(); for (int i = 0; i < m; i++) bi[i] = b[i].val(); auto ntt0 = nttconv_<nttprimes[0]>(ai, bi); auto ntt1 = nttconv_<nttprimes[1]>(ai, bi); auto ntt2 = nttconv_<nttprimes[2]>(ai, bi); a.resize(n + m - 1); for (int i = 0; i < n + m - 1; i++) a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod); } return a; } template <typename MODINT> std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) { return nttconv<MODINT>(a, b, false); } #include <algorithm> #include <cassert> #include <vector> // Formal Power Series (形式的冪級数) based on ModInt<mod> / ModIntRuntime // Reference: https://ei1333.github.io/luzhiled/snippets/math/formal-power-series.html template <typename T> struct FormalPowerSeries : std::vector<T> { using std::vector<T>::vector; using P = FormalPowerSeries; void shrink() { while (this->size() and this->back() == T(0)) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator/(const T &v) const { return P(*this) /= v; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } P &operator+=(const T &v) { if (this->empty()) this->resize(1); (*this)[0] += v; return *this; } P &operator-=(const P &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } P &operator-=(const T &v) { if (this->empty()) this->resize(1); (*this)[0] -= v; return *this; } P &operator*=(const T &v) { for (auto &x : (*this)) x *= v; return *this; } P &operator*=(const P &r) { if (this->empty() || r.empty()) this->clear(); else { auto ret = nttconv(*this, r); *this = P(ret.begin(), ret.end()); } return *this; } P &operator%=(const P &r) { *this -= *this / r * r; return *this; } P operator-() const { P ret = *this; for (auto &v : ret) v = -v; return ret; } P &operator/=(const T &v) { assert(v != T(0)); for (auto &x : (*this)) x /= v; return *this; } P &operator/=(const P &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = (int)this->size() - r.size() + 1; return *this = (reversed().pre(n) * r.reversed().inv(n)).pre(n).reversed(n); } P pre(int sz) const { P ret(this->begin(), this->begin() + std::min((int)this->size(), sz)); return ret; } P operator>>(int sz) const { if ((int)this->size() <= sz) return {}; return P(this->begin() + sz, this->end()); } P operator<<(int sz) const { if (this->empty()) return {}; P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } P reversed(int sz = -1) const { assert(sz >= -1); P ret(*this); if (sz != -1) ret.resize(sz, T()); std::reverse(ret.begin(), ret.end()); return ret; } P differential() const { // formal derivative (differential) of f.p.s. const int n = (int)this->size(); P ret(std::max(0, n - 1)); for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int)this->size(); P ret(n + 1); ret[0] = T(0); for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } /** * @brief f(x)g(x) = 1 (mod x^deg) * * @param deg * @return P ret.size() == deg */ P inv(int deg) const { assert(deg >= -1); if (deg == 0) return {}; assert(this->size() and this->at(0) != T()); // Requirement: F(0) != 0 const int n = this->size(); if (deg == -1) deg = n; P ret({T(1) / this->at(0)}); for (int i = 1; i < deg; i <<= 1) { auto h = (pre(i << 1) * ret).pre(i << 1) >> i; auto tmp = (-h * ret).pre(i); ret.insert(ret.end(), tmp.cbegin(), tmp.cend()); ret.resize(i << 1); } return ret.pre(deg); } P log(int len = -1) const { assert(len >= -1); if (len == 0) return {}; assert(this->size() and ((*this)[0]) == T(1)); // Requirement: F(0) = 1 const int n = (int)this->size(); if (len == 0) return {}; if (len == -1) len = n; return (this->differential() * this->inv(len)).pre(len - 1).integral(); } P sqrt(int deg = -1) const { assert(deg >= -1); const int n = (int)this->size(); if (deg == -1) deg = n; if (this->empty()) return {}; if ((*this)[0] == T(0)) { for (int i = 1; i < n; i++) if ((*this)[i] != T(0)) { if ((i & 1) or deg - i / 2 <= 0) return {}; return (*this >> i).sqrt(deg - i / 2) << (i / 2); } return {}; } T sqrtf0 = (*this)[0].sqrt(); if (sqrtf0 == T(0)) return {}; P y = (*this) / (*this)[0], ret({T(1)}); T inv2 = T(1) / T(2); for (int i = 1; i < deg; i <<= 1) ret = (ret + y.pre(i << 1) * ret.inv(i << 1)) * inv2; return ret.pre(deg) * sqrtf0; } P exp(int deg = -1) const { assert(deg >= -1); assert(this->empty() or ((*this)[0]) == T(0)); // Requirement: F(0) = 0 const int n = (int)this->size(); if (deg == -1) deg = n; P ret({T(1)}); for (int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } P pow(long long k, int deg = -1) const { assert(deg >= -1); const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { P ret(deg); if (deg >= 1) ret[0] = T(1); ret.shrink(); return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != T(0)) { T rev = T(1) / (*this)[i]; P C = (*this) * rev, D(n - i); for (int j = i; j < n; j++) D[j - i] = C.coeff(j); D = (D.log(deg) * T(k)).exp(deg) * (*this)[i].pow(k); if (__int128(k) * i > deg) return {}; P E(deg); long long S = i * k; for (int j = 0; j + S < deg and j < (int)D.size(); j++) E[j + S] = D[j]; E.shrink(); return E; } } return *this; } // Calculate f(X + c) from f(X), O(NlogN) P shift(T c) const { const int n = (int)this->size(); P ret = *this; for (int i = 0; i < n; i++) ret[i] *= T(i).fac(); std::reverse(ret.begin(), ret.end()); P exp_cx(n, 1); for (int i = 1; i < n; i++) exp_cx[i] = exp_cx[i - 1] * c * T(i).inv(); ret = ret * exp_cx; ret.resize(n); std::reverse(ret.begin(), ret.end()); for (int i = 0; i < n; i++) ret[i] *= T(i).facinv(); return ret; } T coeff(int i) const { if ((int)this->size() <= i or i < 0) return T(0); return (*this)[i]; } T eval(T x) const { T ret = 0, w = 1; for (auto &v : *this) ret += w * v, w *= x; return ret; } }; // multipoint polynomial evaluation // input: xs = [x_0, ..., x_{N - 1}]: points to evaluate // f = \sum_i^M f_i x^i // Complexity: O(N (lgN)^2) building, O(N (lgN)^2 + M lg M) evaluation template <typename Tfield> struct MultipointEvaluation { int nx; using polynomial = FormalPowerSeries<Tfield>; std::vector<polynomial> segtree; MultipointEvaluation(const std::vector<Tfield> &xs) : nx(xs.size()) { segtree.resize(nx * 2 - 1); for (int i = 0; i < nx; i++) { segtree[nx - 1 + i] = {-xs[i], 1}; } for (int i = nx - 2; i >= 0; i--) { segtree[i] = segtree[2 * i + 1] * segtree[2 * i + 2]; } } std::vector<Tfield> ret; void _eval_rec(polynomial f, int now) { f %= segtree[now]; f.shrink(); if (now - (nx - 1) >= 0) { ret[now - (nx - 1)] = f.coeff(0); return; } _eval_rec(f, 2 * now + 1); _eval_rec(f, 2 * now + 2); } std::vector<Tfield> evaluate_polynomial(const polynomial &f) { ret.resize(nx); _eval_rec(f, 0); return ret; } std::vector<Tfield> evaluate_polynomial(const std::vector<Tfield> &f) { return evaluate_polynomial(polynomial(f.begin(), f.end())); } std::vector<Tfield> _interpolate_coeffs; polynomial _rec_interpolation(int now, const std::vector<Tfield> &ys) const { int i = now - (nx - 1); if (i >= 0) return {ys[i]}; auto retl = _rec_interpolation(2 * now + 1, ys); auto retr = _rec_interpolation(2 * now + 2, ys); return retl * segtree[2 * now + 2] + retr * segtree[2 * now + 1]; } std::vector<Tfield> polynomial_interpolation(std::vector<Tfield> ys) { assert(nx == int(ys.size())); if (_interpolate_coeffs.empty()) { _interpolate_coeffs = evaluate_polynomial(segtree[0].differential()); for (auto &x : _interpolate_coeffs) x = x.inv(); } for (int i = 0; i < nx; i++) ys[i] *= _interpolate_coeffs[i]; return _rec_interpolation(0, ys); } }; int main() { int N; cin >> N; vector<mint> A(N); cin >> A; for (int i = 0; i < N; ++i) A.at(i) += i; mint num = 1, den = 1; for (int diff = 1; diff < N; ++diff) den *= mint(diff).pow(N - diff); REP(i, N) FOR(j, i + 1, N) num *= A.at(j) - A.at(i); auto rec = [&](auto &&self, int l, int r) -> vector<mint> { if (l + 1 == r) return {-A.at(l), 1}; return nttconv(self(self, l, (l + r) / 2), self(self, (l + r) / 2, r)); }; auto f = rec(rec, 0, N); for (int i = 1; i <= N; ++i) f.at(i) *= i; f.erase(f.begin()); MultipointEvaluation<mint> me(A); auto ret = me.evaluate_polynomial(f); mint ans = mint(-1).pow(lint(N) * (N - 1) / 2); for (auto v : ret) ans *= v; cout << ans / (den * den) << '\n'; }