結果
問題 | No.577 Prime Powerful Numbers |
ユーザー | Sebastian King |
提出日時 | 2023-12-02 22:37:08 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 76 ms / 2,000 ms |
コード長 | 4,850 bytes |
コンパイル時間 | 2,053 ms |
コンパイル使用メモリ | 202,768 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-26 21:42:51 |
合計ジャッジ時間 | 2,783 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 5 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 15 ms
5,376 KB |
testcase_04 | AC | 4 ms
5,376 KB |
testcase_05 | AC | 75 ms
5,376 KB |
testcase_06 | AC | 5 ms
5,376 KB |
testcase_07 | AC | 76 ms
5,376 KB |
testcase_08 | AC | 13 ms
5,376 KB |
testcase_09 | AC | 13 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; typedef long long ll; typedef pair<int, int> PII; const int MAXN = 1e6 + 10; const int MM = 1e9 + 7; namespace prime { using uint128 = __uint128_t; using uint64 = unsigned long long; using int64 = long long; using uint32 = unsigned int; using pii = std::pair<uint64, uint32>; inline uint64 sqr(uint64 x) { return x * x; } inline uint32 isqrt(uint64 x) { return sqrtl(x); } inline uint32 ctz(uint64 x) { return __builtin_ctzll(x); } template <typename word> word gcd(word a, word b) { while (b) { word t = a % b; a = b; b = t; } return a; } template <typename word, typename dword, typename sword> struct Mod { Mod(): x(0) {} Mod(word _x): x(init(_x)) {} bool operator == (const Mod& rhs) const { return x == rhs.x; } bool operator != (const Mod& rhs) const { return x != rhs.x; } Mod& operator += (const Mod& rhs) { if ((x += rhs.x) >= mod) x -= mod; return *this; } Mod& operator -= (const Mod& rhs) { if (sword(x -= rhs.x) < 0) x += mod; return *this; } Mod& operator *= (const Mod& rhs) { x = reduce(dword(x) * rhs.x); return *this; } Mod operator + (const Mod &rhs) const { return Mod(*this) += rhs; } Mod operator - (const Mod &rhs) const { return Mod(*this) -= rhs; } Mod operator * (const Mod &rhs) const { return Mod(*this) *= rhs; } Mod operator - () const { return Mod() - *this; } Mod pow(uint64 e) const { Mod ret(1); for (Mod base = *this; e; e >>= 1, base *= base) { if (e & 1) ret *= base; } return ret; } word get() const { return reduce(x); } static constexpr int word_bits = sizeof(word) * 8; static word modulus() { return mod; } static word init(word w) { return reduce(dword(w) * r2); } static void set_mod(word m) { mod = m, inv = mul_inv(mod), r2 = -dword(mod) % mod; } static word reduce(dword x) { word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits); return sword(y) < 0 ? y + mod : y; } static word mul_inv(word n, int e = 6, word x = 1) { return !e ? x : mul_inv(n, e - 1, x * (2 - x * n)); } static word mod, inv, r2; word x; }; using Mod64 = Mod<uint64, uint128, int64>; using Mod32 = Mod<uint32, uint64, int>; template <> uint64 Mod64::mod = 0; template <> uint64 Mod64::inv = 0; template <> uint64 Mod64::r2 = 0; template <> uint32 Mod32::mod = 0; template <> uint32 Mod32::inv = 0; template <> uint32 Mod32::r2 = 0; template <class word, class mod> bool composite(word n, const uint32* bases, int m) { mod::set_mod(n); int s = __builtin_ctzll(n - 1); word d = (n - 1) >> s; mod one{1}, minus_one{n - 1}; for (int i = 0, j; i < m; ++i) { mod a = mod(bases[i]).pow(d); if (a == one || a == minus_one) continue; for (j = s - 1; j > 0; --j) { if ((a *= a) == minus_one) break; } if (j == 0) return true; } return false; } bool is_prime(uint64 n) { assert(n < (uint64(1) << 63)); static const uint32 bases[][7] = { {2, 3}, {2, 299417}, {2, 7, 61}, {15, 176006322, uint32(4221622697)}, {2, 2570940, 211991001, uint32(3749873356)}, {2, 2570940, 880937, 610386380, uint32(4130785767)}, {2, 325, 9375, 28178, 450775, 9780504, 1795265022} }; if (n <= 1) return false; if (!(n & 1)) return n == 2; if (n <= 8) return true; int x = 6, y = 7; if (n < 1373653) x = 0, y = 2; else if (n < 19471033) x = 1, y = 2; else if (n < 4759123141) x = 2, y = 3; else if (n < 154639673381) x = y = 3; else if (n < 47636622961201) x = y = 4; else if (n < 3770579582154547) x = y = 5; if (n < (uint32(1) << 31)) { return !composite<uint32, Mod32>(n, bases[x], y); } else if (n < (uint64(1) << 63)) { return !composite<uint64, Mod64>(n, bases[x], y); } return true; } } // namespace prime ll pw(ll p, ll q) { ll ret = 1; for (; q; q >>= 1) { if (q & 1) { ret = ret * p; } p = p * p; } return ret; } int sgn_pw_sub(ll p, ll q, ll target) { ll ret = 1; for (int i = 1; i <= q; ++i) { if (ret > target / p) return 1; ret *= p; } if (ret > target) return 1; else if (ret == target) return 0; return -1; } bool check(ll x) { if (prime::is_prime(x)) return true; for (int b = 2; b <= 64; ++b) { ll q = exp(log(x + 0.5) / b); if (q == 0) return false; int sgn; while ((sgn = sgn_pw_sub(q + 1, b, x)) != 1) { q++; } if (prime::is_prime(q) && sgn_pw_sub(q, b, x) == 0) return true; } return false; } void solve(int casi) { ll n; scanf("%lld", &n); if (n <= 3) { puts("No"); return ; } if (n % 2 == 0) { puts("Yes"); return ; } for (ll pw2 = 2; pw2 < n; pw2 *= 2) { if (check(n - pw2)) { puts("Yes"); return ; } } puts("No"); } int main() { int T = 1; scanf("%d", &T); for (int i = 1; i <= T; i++) solve(i); return 0; }