結果
問題 | No.2258 The Jikka Tree |
ユーザー | maspy |
提出日時 | 2023-12-02 23:48:51 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3,062 ms / 4,000 ms |
コード長 | 29,001 bytes |
コンパイル時間 | 6,733 ms |
コンパイル使用メモリ | 343,832 KB |
実行使用メモリ | 190,028 KB |
最終ジャッジ日時 | 2024-09-26 21:46:03 |
合計ジャッジ時間 | 96,487 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 25 ms
5,376 KB |
testcase_04 | AC | 35 ms
5,376 KB |
testcase_05 | AC | 28 ms
5,376 KB |
testcase_06 | AC | 28 ms
5,376 KB |
testcase_07 | AC | 70 ms
5,376 KB |
testcase_08 | AC | 26 ms
5,376 KB |
testcase_09 | AC | 41 ms
5,376 KB |
testcase_10 | AC | 40 ms
5,376 KB |
testcase_11 | AC | 37 ms
5,376 KB |
testcase_12 | AC | 34 ms
5,376 KB |
testcase_13 | AC | 47 ms
5,376 KB |
testcase_14 | AC | 28 ms
5,376 KB |
testcase_15 | AC | 33 ms
5,376 KB |
testcase_16 | AC | 14 ms
5,376 KB |
testcase_17 | AC | 41 ms
5,376 KB |
testcase_18 | AC | 27 ms
5,376 KB |
testcase_19 | AC | 27 ms
5,376 KB |
testcase_20 | AC | 717 ms
11,008 KB |
testcase_21 | AC | 467 ms
16,256 KB |
testcase_22 | AC | 363 ms
5,760 KB |
testcase_23 | AC | 359 ms
5,376 KB |
testcase_24 | AC | 1,024 ms
9,984 KB |
testcase_25 | AC | 1,070 ms
11,904 KB |
testcase_26 | AC | 740 ms
11,520 KB |
testcase_27 | AC | 934 ms
14,592 KB |
testcase_28 | AC | 776 ms
15,104 KB |
testcase_29 | AC | 713 ms
12,160 KB |
testcase_30 | AC | 682 ms
10,624 KB |
testcase_31 | AC | 620 ms
13,440 KB |
testcase_32 | AC | 492 ms
6,016 KB |
testcase_33 | AC | 611 ms
14,592 KB |
testcase_34 | AC | 1,649 ms
139,984 KB |
testcase_35 | AC | 1,126 ms
158,156 KB |
testcase_36 | AC | 1,199 ms
185,296 KB |
testcase_37 | AC | 1,151 ms
188,624 KB |
testcase_38 | AC | 1,725 ms
179,796 KB |
testcase_39 | AC | 2,340 ms
164,944 KB |
testcase_40 | AC | 1,571 ms
153,036 KB |
testcase_41 | AC | 1,490 ms
134,476 KB |
testcase_42 | AC | 1,466 ms
137,936 KB |
testcase_43 | AC | 1,553 ms
138,576 KB |
testcase_44 | AC | 1,552 ms
139,472 KB |
testcase_45 | AC | 1,565 ms
170,448 KB |
testcase_46 | AC | 1,399 ms
172,112 KB |
testcase_47 | AC | 1,404 ms
170,320 KB |
testcase_48 | AC | 1,649 ms
136,148 KB |
testcase_49 | AC | 1,148 ms
158,288 KB |
testcase_50 | AC | 1,101 ms
182,604 KB |
testcase_51 | AC | 1,441 ms
189,776 KB |
testcase_52 | AC | 1,857 ms
175,572 KB |
testcase_53 | AC | 1,737 ms
164,432 KB |
testcase_54 | AC | 2,055 ms
165,588 KB |
testcase_55 | AC | 1,587 ms
135,248 KB |
testcase_56 | AC | 1,625 ms
133,708 KB |
testcase_57 | AC | 2,326 ms
149,584 KB |
testcase_58 | AC | 1,615 ms
136,144 KB |
testcase_59 | AC | 3,062 ms
149,716 KB |
testcase_60 | AC | 1,321 ms
158,292 KB |
testcase_61 | AC | 1,723 ms
184,908 KB |
testcase_62 | AC | 1,669 ms
190,028 KB |
testcase_63 | AC | 2,844 ms
178,004 KB |
testcase_64 | AC | 2,172 ms
161,716 KB |
testcase_65 | AC | 2,148 ms
148,944 KB |
testcase_66 | AC | 2,142 ms
129,744 KB |
testcase_67 | AC | 2,958 ms
153,548 KB |
testcase_68 | AC | 2,381 ms
138,192 KB |
testcase_69 | AC | 2,203 ms
136,396 KB |
testcase_70 | AC | 1,267 ms
118,612 KB |
testcase_71 | AC | 392 ms
5,840 KB |
testcase_72 | AC | 769 ms
8,192 KB |
testcase_73 | AC | 669 ms
11,008 KB |
testcase_74 | AC | 915 ms
14,336 KB |
testcase_75 | AC | 969 ms
135,888 KB |
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/2258" #line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'000'000'000; template <> constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 4 "main.cpp" #line 2 "/home/maspy/compro/library/graph/tree.hpp" #line 2 "/home/maspy/compro/library/graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); if (len(used_e) != M) used_e.assign(M, 0); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 4 "/home/maspy/compro/library/graph/tree.hpp" // HLD euler tour をとっていろいろ。 template <typename GT> struct Tree { using Graph_type = GT; GT &G; using WT = typename GT::cost_type; int N; vector<int> LID, RID, head, V, parent, VtoE; vc<int> depth; vc<WT> depth_weighted; Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); } void build(int r = 0, bool hld = 1) { if (r == -1) return; // build を遅延したいとき N = G.N; LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r); V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1); depth.assign(N, -1), depth_weighted.assign(N, 0); assert(G.is_prepared()); int t1 = 0; dfs_sz(r, -1, hld); dfs_hld(r, t1); } void dfs_sz(int v, int p, bool hld) { auto &sz = RID; parent[v] = p; depth[v] = (p == -1 ? 0 : depth[p] + 1); sz[v] = 1; int l = G.indptr[v], r = G.indptr[v + 1]; auto &csr = G.csr_edges; // 使う辺があれば先頭にする for (int i = r - 2; i >= l; --i) { if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]); } int hld_sz = 0; for (int i = l; i < r; ++i) { auto e = csr[i]; if (depth[e.to] != -1) continue; depth_weighted[e.to] = depth_weighted[v] + e.cost; VtoE[e.to] = e.id; dfs_sz(e.to, v, hld); sz[v] += sz[e.to]; if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); } } } void dfs_hld(int v, int ×) { LID[v] = times++; RID[v] += LID[v]; V[LID[v]] = v; bool heavy = true; for (auto &&e: G[v]) { if (depth[e.to] <= depth[v]) continue; head[e.to] = (heavy ? head[v] : e.to); heavy = false; dfs_hld(e.to, times); } } vc<int> heavy_path_at(int v) { vc<int> P = {v}; while (1) { int a = P.back(); for (auto &&e: G[a]) { if (e.to != parent[a] && head[e.to] == v) { P.eb(e.to); break; } } if (P.back() == a) break; } return P; } int heavy_child(int v) { int k = LID[v] + 1; if (k == N) return -1; int w = V[k]; return (parent[w] == v ? w : -1); } int e_to_v(int eid) { auto e = G.edges[eid]; return (parent[e.frm] == e.to ? e.frm : e.to); } int v_to_e(int v) { return VtoE[v]; } int ELID(int v) { return 2 * LID[v] - depth[v]; } int ERID(int v) { return 2 * RID[v] - depth[v] - 1; } // 目標地点へ進む個数が k int LA(int v, int k) { assert(k <= depth[v]); while (1) { int u = head[v]; if (LID[v] - k >= LID[u]) return V[LID[v] - k]; k -= LID[v] - LID[u] + 1; v = parent[u]; } } int la(int u, int v) { return LA(u, v); } int LCA(int u, int v) { for (;; v = parent[head[v]]) { if (LID[u] > LID[v]) swap(u, v); if (head[u] == head[v]) return u; } } // root を根とした場合の lca int LCA_root(int u, int v, int root) { return LCA(u, v) ^ LCA(u, root) ^ LCA(v, root); } int lca(int u, int v) { return LCA(u, v); } int lca_root(int u, int v, int root) { return LCA_root(u, v, root); } int subtree_size(int v, int root = -1) { if (root == -1) return RID[v] - LID[v]; if (v == root) return N; int x = jump(v, root, 1); if (in_subtree(v, x)) return RID[v] - LID[v]; return N - RID[x] + LID[x]; } int dist(int a, int b) { int c = LCA(a, b); return depth[a] + depth[b] - 2 * depth[c]; } WT dist_weighted(int a, int b) { int c = LCA(a, b); return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c]; } // a is in b bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; } int jump(int a, int b, ll k) { if (k == 1) { if (a == b) return -1; return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]); } int c = LCA(a, b); int d_ac = depth[a] - depth[c]; int d_bc = depth[b] - depth[c]; if (k > d_ac + d_bc) return -1; if (k <= d_ac) return LA(a, k); return LA(b, d_ac + d_bc - k); } vc<int> collect_child(int v) { vc<int> res; for (auto &&e: G[v]) if (e.to != parent[v]) res.eb(e.to); return res; } vc<int> collect_light(int v) { vc<int> res; bool skip = true; for (auto &&e: G[v]) if (e.to != parent[v]) { if (!skip) res.eb(e.to); skip = false; } return res; } vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) { // [始点, 終点] の"閉"区間列。 vc<pair<int, int>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { down.eb(LID[head[v]], LID[v]); v = parent[head[v]]; } else { up.eb(LID[u], LID[head[u]]); u = parent[head[u]]; } } if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]); elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge); reverse(all(down)); up.insert(up.end(), all(down)); return up; } vc<int> restore_path(int u, int v) { vc<int> P; for (auto &&[a, b]: get_path_decomposition(u, v, 0)) { if (a <= b) { FOR(i, a, b + 1) P.eb(V[i]); } else { FOR_R(i, b, a + 1) P.eb(V[i]); } } return P; } }; #line 2 "/home/maspy/compro/library/graph/ds/static_toptree.hpp" /* tute さんの実装 https://yukicoder.me/submissions/838092 を参考にしている. いわゆる toptree (辺からはじめてマージ過程を木にする)とは少し異なるはず. 木を「heavy path 上の辺で分割」「根を virtual にする」 「light edges の分割」「light edge を消す」で頂点に分割していく. 逆にたどれば,1 頂点からはじめて木全体を作る高さ O(logN) の木になる. 高さについて:https://www.mathenachia.blog/mergetech-and-logn/ ・lch == rch == -1:頂点 ・rch == -1: ・heavy なら light の集約に頂点を付加したもの ・light なら 根付き木に light edge を付加したもの ・子が 2 つ ・heavy なら heavy path を辺で結合したもの ・light なら light edge たちのマージ */ template <typename TREE> struct Static_TopTree { TREE &tree; vc<int> par, lch, rch, A, B; vc<bool> heavy; Static_TopTree(TREE &tree) : tree(tree) { int root = tree.V[0]; build(root); // relabel int n = len(par); reverse(all(par)), reverse(all(lch)), reverse(all(rch)), reverse(all(A)), reverse(all(B)), reverse(all(heavy)); for (auto &x: par) x = (x == -1 ? -1 : n - 1 - x); for (auto &x: lch) x = (x == -1 ? -1 : n - 1 - x); for (auto &x: rch) x = (x == -1 ? -1 : n - 1 - x); } // 木全体での集約値を得る // from_vertex(v) // add_vertex(x, v) // add_edge(x, u, v) : u が親 // merge_light(x, y) // merge_heavy(x, y, a, b, c, d) : [a,b] + [c,d] = [a,d] template <typename Data, typename F1, typename F2, typename F3, typename F4, typename F5> Data tree_dp(F1 from_vertex, F2 add_vertex, F3 add_edge, F4 merge_light, F5 merge_heavy) { auto dfs = [&](auto &dfs, int k) -> Data { if (lch[k] == -1 && rch[k] == -1) { return from_vertex(A[k]); } if (rch[k] == -1) { Data x = dfs(dfs, lch[k]); if (heavy[k]) { return add_vertex(x, A[k]); } else { return add_edge(x, A[k], B[lch[k]]); } } Data x = dfs(dfs, lch[k]); Data y = dfs(dfs, rch[k]); if (heavy[k]) { return merge_heavy(x, y, A[lch[k]], B[lch[k]], A[rch[k]], B[rch[k]]); } return merge_light(x, y); }; return dfs(dfs, 0); } private: int add_node(int l, int r, int a, int b, bool h) { int ret = len(par); par.eb(-1), lch.eb(l), rch.eb(r), A.eb(a), B.eb(b), heavy.eb(h); if (l != -1) par[l] = ret; if (r != -1) par[r] = ret; return ret; } int build(int v) { // v は heavy path の根なので v を根とする部分木に対応するノードを作る assert(tree.head[v] == v); auto path = tree.heavy_path_at(v); reverse(all(path)); auto dfs = [&](auto &dfs, int l, int r) -> int { // path[l:r) if (l + 1 < r) { int m = (l + r) / 2; int x = dfs(dfs, l, m); int y = dfs(dfs, m, r); return add_node(x, y, path[l], path[r - 1], true); } assert(r == l + 1); int me = path[l]; // sz, idx pqg<pair<int, int>> que; for (auto &to: tree.collect_light(me)) { int x = build(to); int y = add_node(x, -1, me, me, false); que.emplace(tree.subtree_size(to), y); } if (que.empty()) { return add_node(-1, -1, me, me, true); } while (len(que) >= 2) { auto [s1, x] = POP(que); auto [s2, y] = POP(que); int z = add_node(x, y, me, me, false); que.emplace(s1 + s2, z); } auto [s, x] = POP(que); return add_node(x, -1, me, me, true); }; return dfs(dfs, 0, len(path)); } }; #line 6 "main.cpp" void solve() { LL(N); Graph<int, 0> G(N); G.read_tree(0, 0); VEC(int, A, N); Tree<decltype(G)> tree(G); Static_TopTree<decltype(tree)> STT(tree); auto merge = [&](vc<int>& A, vc<int>& B) -> pair<vc<int>, vc<int>> { vc<int> C; vc<int> left; int a = 0, b = 0; A.eb(infty<int>), B.eb(infty<int>); FOR(len(A) + len(B) - 2) { if (A[a] < B[b]) { C.eb(A[a++]), left.eb(1); } else { C.eb(B[b++]), left.eb(0); } } POP(A), POP(B); return {C, left}; }; int n = len(STT.par); vvc<int> V(n); vvc<int> LEFT(n); vvc<ll> Ac(n); { auto dfs = [&](auto& dfs, int k) -> void { int l = STT.lch[k], r = STT.rch[k], a = STT.A[k]; if (l != -1) dfs(dfs, l); if (r != -1) dfs(dfs, r); if (l == -1 && r == -1) { V[k] = {a}; return; } if (r == -1) { if (STT.heavy[k]) { vc<int> B = {a}; auto [C, left] = merge(V[l], B); V[k] = C; LEFT[k] = left; return; } V[k] = V[l]; LEFT[k] = vc<int>(len(V[k]), 1); return; } auto [C, left] = merge(V[l], V[r]); V[k] = C; LEFT[k] = left; }; dfs(dfs, 0); } FOR(i, n) { Ac[i] = {0}; for (auto& v: V[i]) Ac[i].eb(Ac[i].back() + A[v]); } auto get = [&](int k, ll K, ll L, ll R, ll delta) -> ll { int a = LB(V[k], L); int b = LB(V[k], R); ll cnt = b - a; ll sm = Ac[k][b] - Ac[k][a]; ll val = K * cnt + sm; val = 10 * val + binary_search(all(V[k]), delta); return val; }; auto get_v = [&](int v, ll K, ll L, ll R, ll delta) -> ll { ll val = 0; if (L <= v && v < R) val += A[v] + K; val *= 10; if (v == delta) ++val; return val; }; auto solve = [&](ll L, ll R, ll delta, ll K) -> int { ll total = get(0, K, L, R, delta); ll need = ceil<ll>(total, 2); auto dfs = [&](auto& dfs, int k, ll need_path) -> int { if (get(k, K, L, R, delta) < need_path) return -1; int l = STT.lch[k], r = STT.rch[k], a = STT.A[k], b = STT.B[k]; if (l == -1 && r == -1) { return (get_v(a, K, L, R, delta) >= need_path ? a : -1); } if (r == -1) { if (STT.heavy[k]) { // light に根を足したもの int v = dfs(dfs, l, need); if (v != -1) return v; return (get(k, K, L, R, delta) >= need_path ? a : -1); } // heavy に light edge を足したもの return dfs(dfs, l, need); } if (STT.heavy[k]) { // heavy path をマージしたもの int v1 = dfs(dfs, l, need_path); if (v1 != -1) return v1; return dfs(dfs, r, need_path - get(l, K, L, R, delta)); } // light をマージしたもの int v = dfs(dfs, l, need); if (v != -1) return v; return dfs(dfs, r, need); }; return dfs(dfs, 0, need); }; ll X_SUM = 0; INT(Q); FOR(Q) { LL(aa, bb, kk, delta); ll a = (aa + X_SUM) % N; ll b = (bb + 2 * X_SUM) % N; int mod = 150001; ll K = (kk + (X_SUM % mod) * (X_SUM % mod)) % mod; ll L = min(a, b); ll R = 1 + max(a, b); ll X = solve(L, R, delta, K); // print(X, ",", L, R, K, delta); print(X); X_SUM += X; } } signed main() { int T = 1; // INT(T); FOR(T) solve(); return 0; }