結果

問題 No.2575 Almost Increasing Sequence
ユーザー siro53siro53
提出日時 2023-12-03 03:31:32
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 9,118 ms / 10,000 ms
コード長 8,695 bytes
コンパイル時間 3,708 ms
コンパイル使用メモリ 233,728 KB
実行使用メモリ 6,676 KB
スコア 10,000
最終ジャッジ日時 2023-12-03 03:34:45
合計ジャッジ時間 124,594 ms
ジャッジサーバーID
(参考情報)
judge13 / judge12
純コード判定しない問題か言語
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 8,906 ms
6,676 KB
testcase_01 AC 8,896 ms
6,676 KB
testcase_02 AC 8,800 ms
6,676 KB
testcase_03 AC 8,834 ms
6,676 KB
testcase_04 AC 8,793 ms
6,676 KB
testcase_05 AC 8,895 ms
6,676 KB
testcase_06 AC 8,832 ms
6,676 KB
testcase_07 AC 8,843 ms
6,676 KB
testcase_08 AC 8,881 ms
6,676 KB
testcase_09 AC 8,888 ms
6,676 KB
testcase_10 AC 8,905 ms
6,676 KB
testcase_11 AC 8,909 ms
6,676 KB
testcase_12 AC 8,896 ms
6,676 KB
testcase_13 AC 8,996 ms
6,676 KB
testcase_14 AC 8,993 ms
6,676 KB
testcase_15 AC 9,118 ms
6,676 KB
testcase_16 AC 8,966 ms
6,676 KB
testcase_17 AC 8,921 ms
6,676 KB
testcase_18 AC 9,005 ms
6,676 KB
testcase_19 AC 8,938 ms
6,676 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#line 1 "combined.cpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
template <class T> inline bool chmax(T &a, T b) {
    if(a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <class T> inline bool chmin(T &a, T b) {
    if(a > b) {
        a = b;
        return 1;
    }
    return 0;
}
#ifdef DEBUG
template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
    os << '(' << p.first << ',' << p.second << ')';
    return os;
}
template <class T> ostream &operator<<(ostream &os, const vector<T> &v) {
    os << '{';
    for(int i = 0; i < (int)v.size(); i++) {
        if(i) { os << ','; }
        os << v[i];
    }
    os << '}';
    return os;
}
void debugg() { cerr << endl; }
template <class T, class... Args>
void debugg(const T &x, const Args &... args) {
    cerr << " " << x;
    debugg(args...);
}
#define debug(...)                                                             \
    cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debugg(__VA_ARGS__)
#define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif

struct Setup {
    Setup() {
        cin.tie(0);
        ios::sync_with_stdio(false);
        cout << fixed << setprecision(15);
    }
} __Setup;

using ll = long long;
#define OVERLOAD3(_1, _2, _3, name, ...) name
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
#define REP1(i, n) for(int i = 0; i < int(n); i++)
#define REP2(i, a, b) for(int i = (a); i < int(b); i++)
#define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())
#define REVERSE(v) reverse(ALL(v))
#define SZ(v) ((int)(v).size())
const int INF = 1 << 30;
const ll LLINF = 1LL << 60;
constexpr int MOD = 1000000007;
constexpr int MOD2 = 998244353;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};

void Case(int i) { cout << "Case #" << i << ": "; }
int popcount(int x) { return __builtin_popcount(x); }
ll popcount(ll x) { return __builtin_popcountll(x); }
#pragma endregion Macros

#line 2 "/Users/siro53/kyo-pro/compro_library/modint/modint.hpp"

#line 6 "/Users/siro53/kyo-pro/compro_library/modint/modint.hpp"

template <int mod> class ModInt {
  public:
    ModInt() : x(0) {}
    ModInt(long long y)
        : x(y >= 0 ? y % umod() : (umod() - (-y) % umod()) % umod()) {}
    unsigned int val() const { return x; }
    ModInt &operator+=(const ModInt &p) {
        if((x += p.x) >= umod()) x -= umod();
        return *this;
    }
    ModInt &operator-=(const ModInt &p) {
        if((x += umod() - p.x) >= umod()) x -= umod();
        return *this;
    }
    ModInt &operator*=(const ModInt &p) {
        x = (unsigned int)(1ULL * x * p.x % umod());
        return *this;
    }
    ModInt &operator/=(const ModInt &p) {
        *this *= p.inv();
        return *this;
    }
    ModInt operator-() const { return ModInt(-(long long)x); }
    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
    bool operator==(const ModInt &p) const { return x == p.x; }
    bool operator!=(const ModInt &p) const { return x != p.x; }
    ModInt inv() const {
        long long a = x, b = mod, u = 1, v = 0, t;
        while(b > 0) {
            t = a / b;
            std::swap(a -= t * b, b);
            std::swap(u -= t * v, v);
        }
        return ModInt(u);
    }
    ModInt pow(unsigned long long n) const {
        ModInt ret(1), mul(x);
        while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }
    friend std::ostream &operator<<(std::ostream &os, const ModInt &p) {
        return os << p.x;
    }
    friend std::istream &operator>>(std::istream &is, ModInt &a) {
        long long t;
        is >> t;
        a = ModInt<mod>(t);
        return (is);
    }
    static constexpr int get_mod() { return mod; }

  private:
    unsigned int x;
    static constexpr unsigned int umod() { return mod; }
};
#line 78 "combined.cpp"
using mint = ModInt<MOD2>;
#line 2 "/Users/siro53/kyo-pro/compro_library/math/binom.hpp"

#line 6 "/Users/siro53/kyo-pro/compro_library/math/binom.hpp"

template <class mint> class Binomial {
  public:
    explicit Binomial(): Binomial(1) {}
    explicit Binomial(int MAX) : f(MAX, mint(1)), f_inv(MAX, mint(1)) {
        for(int i = 1; i < MAX; i++) f[i] = f[i-1] * mint(i);
        f_inv[MAX - 1] = f[MAX - 1].inv();
        for(int i = MAX - 2; i >= 1; i--) {
            f_inv[i] = f_inv[i + 1] * mint(i + 1);
        } 
    }
    void extend() {
        int n = (int)f.size();
        f.resize(n * 2);
        f_inv.resize(n * 2);
        for(int i = n; i < n * 2; i++) f[i] = f[i - 1] * mint(i);
        f_inv[n * 2 - 1] = f[n * 2 - 1].inv();
        for(int i = n * 2 - 2; i >= n; i--) {
            f_inv[i] = f_inv[i + 1] * mint(i + 1);
        }
    }
    mint fac(int n) {
        if(n < 0) return mint(0);
        while(n >= (int)f.size()) extend();
        return f[n];
    }
    mint fac_inv(int n) {
        if(n < 0) return mint(0);
        while(n >= (int)f_inv.size()) extend();
        return f_inv[n];
    }
    mint inv(int n) {
        if(n < 0) return -mint(-n);
        assert(n != 0);
        while(n >= (int)f_inv.size()) extend();
        return (f_inv[n] * f[n - 1]);
    }
    mint binom(int n, int k) {
        if(n < k || n < 0 || k < 0) return mint(0);
        return (fac(n) * fac_inv(k) * fac_inv(n - k));
    }
    mint binom_naive(long long n, long long k) {
        if(n < k || n < 0 || k < 0) return mint(0);
        mint res(1);
        k = std::min(k, n - k);
        for(int i = 0; i < k; i++) res *= inv(i + 1) * mint(n - i);
        return res;
    }
    mint perm(int n, int k) {
        if(n < k || n < 0 || k < 0) return mint(0);
        return (fac(n) * fac_inv(n - k));
    }
    mint hom(int n, int k) {
        if(n < 0 || k < 0) return mint(0);
        return (k == 0 ? mint(1) : binom(n + k - 1, k));
    }

  private:
    std::vector<mint> f, f_inv;
};
#line 80 "combined.cpp"

int LIS(const vector<int>& p) {
    int n = SZ(p);
    vector<int> dp(n+1, INF);
    REP(i, n) {
        int idx = lower_bound(ALL(dp), p[i]) - dp.begin();
        dp[idx] = p[i];
    }
    return lower_bound(ALL(dp), INF) - dp.begin();
}

int LDS(const vector<int>& p) {
    int n = SZ(p);
    vector<int> dp(n+1, INF);
    REP(i, n) {
        int idx = lower_bound(ALL(dp), -p[i]) - dp.begin();
        dp[idx] = -p[i];
    }
    return lower_bound(ALL(dp), INF) - dp.begin();
}

mint f(int N, int K) {
    vector<int> p(N);
    iota(ALL(p), 1);
    mint ans = 0;
    vector<int> cnt(N+1);
    do {
        if(LDS(p) != 3) continue;
        int len = LIS(p);
        cnt[len]++;
        ans += mint(len).pow(K);
    } while(next_permutation(ALL(p)));
    return ans;
}

void naive() {
    int K;
    cin >> K;
    const int N = 10;
    cout << N << endl;
    REP(n, 1, N + 1) {
        cout << f(n, K) << " \n"[n == N];
    }
}

void solve() {
    Binomial<mint> binom;
    int K;
    cin >> K;
    // https://codeforces.com/blog/entry/98167
    vector<int> lambda_t;
    auto standard_tableau_count = [&](int n, const vector<int>& lambda, int sum) -> mint {
        lambda_t.resize(lambda[0]);
        REP(j, lambda[0]) {
            int i = 0;
            while(i < n and lambda[i] >= j+1) i++;
            lambda_t[j] = i; 
        }
        mint res = binom.fac(sum);
        REP(i, SZ(lambda)) {
            REP(j, lambda[i]) {
                int flen = 1 + (lambda[i] - j - 1) + (lambda_t[j] - i - 1);
                res *= binom.inv(flen);
            }
        }
        return res;
    };
    const int N = 500;
    cout << N << endl;
    REP(n, 1, N+1) {
        mint ans = 0;
        REP(i, 1, n+1) {
            mint sum = 0;
            REP(j, i+1) {
                int k = n - i - j;
                if(k < 1) continue;
                if(!(i >= j and j >= k)) continue;
                mint c = standard_tableau_count(3, {i, j, k}, n);
                sum += c * c;
            }
            ans += sum * mint(i).pow(K);
        }
        // REP(i, 1, n+1) ans += cnt[i] * mint(i).pow(K);
        cout << ans << " \n"[n == N];
        // debug(ans, n);
    }
}

int main() {
    int T{1};
    // cin >> T;
    while(T--) solve();
}
0