結果

問題 No.1087 転倒数の転倒数
ユーザー vwxyzvwxyz
提出日時 2023-12-03 03:56:58
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
WA  
実行時間 -
コード長 21,152 bytes
コンパイル時間 318 ms
コンパイル使用メモリ 14,720 KB
実行使用メモリ 51,840 KB
最終ジャッジ日時 2024-09-26 21:58:23
合計ジャッジ時間 15,970 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 RE -
testcase_02 RE -
testcase_03 WA -
testcase_04 WA -
testcase_05 AC 39 ms
12,928 KB
testcase_06 AC 38 ms
12,928 KB
testcase_07 AC 43 ms
14,720 KB
testcase_08 AC 59 ms
20,608 KB
testcase_09 AC 60 ms
20,480 KB
testcase_10 AC 39 ms
12,928 KB
testcase_11 AC 39 ms
12,928 KB
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 39 ms
12,928 KB
testcase_16 AC 47 ms
12,800 KB
testcase_17 RE -
testcase_18 RE -
testcase_19 WA -
testcase_20 RE -
testcase_21 RE -
testcase_22 WA -
testcase_23 WA -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 WA -
testcase_30 RE -
testcase_31 RE -
testcase_32 WA -
testcase_33 RE -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline
from collections import defaultdict,Counter

class UnionFind:
    def __init__(self,N,label=None,f=None,weighted=False,rollback=False):
        self.N=N
        self.parents=[None]*self.N
        self.size=[1]*self.N
        self.roots={i for i in range(self.N)}
        self.label=label
        if self.label!=None:
            self.label=[x for x in label]
        self.f=f
        self.weighted=weighted
        if self.weighted:
            self.weight=[0]*self.N
        self.rollback=rollback
        if self.rollback:
            self.operate_list=[]
            self.operate_set=[]

    def Find(self,x):
        stack=[]
        while self.parents[x]!=None:
            stack.append(x)
            x=self.parents[x]
        if not self.rollback:
            if self.weighted:
                w=0
                for y in stack[::-1]:
                    self.parents[y]=x
                    w+=self.weight[y]
                    self.weight[y]=w
            else:
                for y in stack[::-1]:
                    self.parents[y]=x
        return x

    def Union(self,x,y,w=None):
        root_x=self.Find(x)
        root_y=self.Find(y)
        if self.rollback:
            self.operate_list.append([])
            self.operate_set.append([])
        if root_x==root_y:
            if self.weighted:
                if self.weight[y]-self.weight[x]==w:
                    return True
                else:
                    return False
        else:
            if self.size[root_x]<self.size[root_y]:
                x,y=y,x
                root_x,root_y=root_y,root_x
                if self.weighted:
                    w=-w
            if self.rollback:
                self.operate_list[-1].append((self.parents,root_y,self.parents[root_y]))
                self.operate_list[-1].append((self.size,root_x,self.size[root_x]))
                self.operate_set[-1].append(root_y)
                if self.label!=None:
                    self.operate_list[-1]((self.label,root_x,self.label[root_x]))
                if self.weighted:
                    self.operate_list[-1].append((self.weight,root_y,self.weight[root_y]))
            self.parents[root_y]=root_x
            self.size[root_x]+=self.size[root_y]
            self.roots.remove(root_y)
            if self.label!=None:
                self.label[root_x]=self.f(self.label[root_x],self.label[root_y])
            if self.weighted:
                self.weight[root_y]=w+self.weight[x]-self.weight[y]

    def Size(self,x):
        return self.size[self.Find(x)]

    def Same(self,x,y):
        return self.Find(x)==self.Find(y)

    def Label(self,x):
        return self.label[self.Find(x)]

    def Weight(self,x,y):
        root_x=self.Find(x)
        root_y=self.Find(y)
        if root_x!=root_y:
            return None
        return self.weight[y]-self.weight[x]

    def Roots(self):
        return list(self.roots)

    def Linked_Components_Count(self):
        return len(self.roots)

    def Linked_Components(self):
        linked_components=defaultdict(list)
        for x in range(self.N):
            linked_components[self.Find(x)].append(x)
        return linked_components
    
    def Rollback(self):
        assert self.rollback
        if self.operate_list:
            for lst,x,v in self.operate_list.pop():
                lst[x]=v
            for x in self.operate_set.pop():
                self.roots.add(x)            
            return True
        else:
            return False

    def __str__(self):
        linked_components=defaultdict(list)
        for x in range(self.N):
            linked_components[self.Find(x)].append(x)
        return "\n".join(f"{r}: {linked_components[r]}" for r in sorted(list(linked_components.keys())))

class Graph:
    def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")):
        self.V=V
        self.directed=directed
        self.weighted=weighted
        self.inf=inf
        if graph!=None:
            self.graph=graph
            """
            self.edges=[]
            for i in range(self.V):
                if self.weighted:
                    for j,d in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j,d))
                else:
                    for j in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j))
            """
        else:
            self.edges=edges
            self.graph=[[] for i in range(self.V)]
            if weighted:
                for i,j,d in self.edges:
                    self.graph[i].append((j,d))
                    if not self.directed:
                        self.graph[j].append((i,d))
            else:
                for i,j in self.edges:
                    self.graph[i].append(j)
                    if not self.directed:
                        self.graph[j].append(i)

    def Warshall_Floyd(self,route_restoration=False):
        dist=[[self.inf]*self.V for i in range(self.V)]
        for i in range(self.V):
            dist[i][i]=0
        if route_restoration:
            parents=[[j for j in range(self.V)] for i in range(self.V)]
        for i,j,d in self.edges:
            if i==j:
                continue
            if dist[i][j]>d:
                dist[i][j]=d
                if route_restoration:
                    parents[i][j]=i
            if not self.directed and dist[j][i]>d:
                dist[j][i]=d
                if route_restoration:
                    parents[j][i]=j
        for k in range(self.V):
            for i in range(self.V):
                for j in range(self.V):
                    if dist[i][j]>dist[i][k]+dist[k][j]:
                        dist[i][j]=dist[i][k]+dist[k][j]
                        if route_restoration:
                            parents[i][j]=parents[k][j]
        for i in range(self.V):
            if dist[i][i]<0:
                for j in range(self.V):
                    if dist[i][j]!=self.inf:
                        dist[i][j]=-self.inf
        if route_restoration:
            for i in range(self.V):
                if dist[i][i]==0:
                    parents[i][i]=None
            return dist,parents
        else:
            return dist

    def Kruskal(self,maximize=False,spanning_tree=False):
        UF=UnionFind(self.V)
        sorted_edges=sorted(self.edges if self.weighted else [(x,y,1) for x,y in self.edges],key=lambda tpl:tpl[2],reverse=maximize)
        if spanning_tree:
            st=[]
        else:
            cost=0
        for x,y,d in sorted_edges:
            if not UF.Same(x,y):
                UF.Union(x,y)
                if spanning_tree:
                    st.append((x,y,d))
                else:
                    cost+=d
        return st if spanning_tree else cost

def Inversion_Number(lst,weight=False,weakly=False):
    compress,decompress=Compress(lst)
    compressed_lst=[compress[x] for x in lst]
    N=len(compress)
    if not weight:
        weight=[1]*len(lst)
    ST=Segment_Tree(N,lambda x,y:x+y,0)
    inversion_number=0
    for c,x in zip(weight,compressed_lst):
        inversion_number+=ST.Fold(x if weakly else x+1,N)*c
        ST[x]+=c
    return inversion_number

def Compress(lst):
    decomp=sorted(list(set(lst)))
    comp={x:i for i,x in enumerate(decomp)}
    return comp,decomp

class Segment_Tree:
    def __init__(self,N,f,e,lst=None,dynamic=False):
        self.f=f
        self.e=e
        self.N=N
        if dynamic:
            self.segment_tree=defaultdict(lambda:self.e)
        else:
            if lst==None:
                self.segment_tree=[self.e]*2*self.N
            else:
                assert len(lst)<=self.N
                self.segment_tree=[self.e]*self.N+[x for x in lst]+[self.e]*(N-len(lst))
                for i in range(self.N-1,0,-1):
                    self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])

    def __getitem__(self,i):
        if type(i)==int:
            if -self.N<=i<0:
                return self.segment_tree[i+self.N*2]
            elif 0<=i<self.N:
                return self.segment_tree[i+self.N]
            else:
                raise IndexError("list index out of range")
        else:
            a,b,c=i.start,i.stop,i.step
            if a==None:
                a=self.N
            else:
                a+=self.N
            if b==None:
                b=self.N*2
            else:
                b+=self.N
            return self.segment_tree[slice(a,b,c)]

    def __setitem__(self,i,x):
        if -self.N<=i<0:
            i+=self.N*2
        elif 0<=i<self.N:
            i+=self.N
        else:
            raise IndexError("list index out of range")
        self.segment_tree[i]=x
        while i>1:
            i>>= 1
            self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])

    def Build(self,lst):
        for i,x in enumerate(lst,self.N):
            self.segment_tree[i]=x
        for i in range(self.N-1,0,-1):
            self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])

    def Fold(self,L=None,R=None):
        if L==None:
            L=self.N
        else:
            L+=self.N
        if R==None:
            R=self.N*2
        else:
            R+=self.N
        vL=self.e
        vR=self.e
        while L<R:
            if L&1:
                vL=self.f(vL,self.segment_tree[L])
                L+=1
            if R&1:
                R-=1
                vR=self.f(self.segment_tree[R],vR)
            L>>=1
            R>>=1
        return self.f(vL,vR)

    def Fold_Index(self,L=None,R=None):
        if L==None:
            L=self.N
        else:
            L+=self.N
        if R==None:
            R=self.N*2
        else:
            R+=self.N
        if L==R:
            return None
        x=self.Fold(L-self.N,R-self.N)
        while L<R:
            if L&1:
                if self.segment_tree[L]==x:
                    i=L
                    break
                L+=1
            if R&1:
                R-=1
                if self.segment_tree[R]==x:
                    i=R
                    break
            L>>=1
            R>>=1
        while i<self.N:
            if self.segment_tree[i]==self.segment_tree[i<<1]:
                i<<=1
            else:
                i<<=1
                i|=1
        i-=self.N
        return i

    def Bisect_Right(self,L=None,f=None):
        if L==self.N:
            return self.N
        if L==None:
            L=0
        L+=self.N
        vl=self.e
        vr=self.e
        l,r=L,self.N*2
        while l<r:
            if l&1:
                vl=self.f(vl,self.segment_tree[l])
                l+=1
            if r&1:
                r-=1
                vr=self.f(self.segment_tree[r],vr)
            l>>=1
            r>>=1
        if f(self.f(vl,vr)):
            return self.N
        v=self.e
        while True:
            while L%2==0:
                L>>=1
            vv=self.f(v,self.segment_tree[L])
            if f(vv):
                v=vv
                L+=1
            else:
                while L<self.N:
                    L<<=1
                    vv=self.f(v,self.segment_tree[L])
                    if f(vv):
                        v=vv
                        L+=1
                return L-self.N

    def Bisect_Left(self,R=None,f=None):
        if R==0:
            return 0
        if R==None:
            R=self.N
        R+=self.N
        vl=self.e
        vr=self.e
        l,r=self.N,R
        while l<r:
            if l&1:
                vl=self.f(vl,self.segment_tree[l])
                l+=1
            if r&1:
                r-=1
                vr=self.f(self.segment_tree[r],vr)
            l>>=1
            r>>=1
        if f(self.f(vl,vr)):
            return 0
        v=self.e
        while True:
            R-=1
            while R>1 and R%2:
                R>>=1
            vv=self.f(self.segment_tree[R],v)
            if f(vv):
                v=vv
            else:
                while R<self.N:
                    R=2*R+1
                    vv=self.f(self.segment_tree[R],v)
                    if f(vv):
                        v=vv
                        R-=1
                return R+1-self.N

    def __str__(self):
        return "["+", ".join(map(str,self.segment_tree[self.N:]))+"]"

class Cumsum:
    def __init__(self,lst,mod=0):
        self.N=len(lst)
        self.mod=mod
        self.cumsum=[0]*(self.N+1)
        self.cumsum[0]=0
        for i in range(1,self.N+1):
            self.cumsum[i]=self.cumsum[i-1]+lst[i-1]
            if self.mod:
                self.cumsum[i]%=self.mod

    def __getitem__(self,i):
        if type(i)==int:
            if 0<=i<self.N:
                a,b=i,i+1
            elif -self.N<=i<0:
                a,b=i+self.N,i+self.N+1
            else:
                raise IndexError('list index out of range')
        else:
            a,b=i.start,i.stop
            if a==None or a<-self.N:
                a=0
            elif self.N<=a:
                a=self.N
            elif a<0:
                a+=self.N
            if b==None or self.N<=b:
                b=self.N
            elif b<-self.N:
                b=0
            elif b<0:
                b+=self.N
        s=self.cumsum[b]-self.cumsum[a]
        if self.mod:
            s%=self.mod
        return s

    def __setitem__(self,i,x):
        if -self.N<=i<0:
            i+=self.N
        elif not 0<=i<self.N:
            raise IndexError('list index out of range')
        self.cumsum[i+1]=self.cumsum[i]+x
        if self.mod:
            self.cumsum[i+1]%=self.mod

    def __len__(self):
        return self.N

    def __str__(self):
        lst=[self.cumsum[i+1]-self.cumsum[i] for i in range(self.N)]
        if self.mod:
            for i in range(self.N):
                lst[i]%=self.mod
        return "["+", ".join(map(str,lst))+"]"

def Swap_Count(N,A,B):
    if sorted(A)==sorted(B):
        idxA={tpl:i for i,tpl in enumerate(sorted([(A[i],i) for i in range(N)]))}
        idxB={tpl:i for i,tpl in enumerate(sorted([(B[i],i) for i in range(N)]))}
        for i in range(N):
            A[i]=idxA[(A[i],i)]
            B[i]=idxB[(B[i],i)]
        idx={A[i]:i for i in range(N)}
        for i in range(N):
            B[i]=idx[B[i]]
        retu=Inversion_Number(B)
    else:
        retu=-1
    return retu

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=None):
        self.p=p
        self.e=e
        if self.e==None:
            self.mod=self.p
        else:
            self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            #assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        if self.e==None:
            for i in range(1,N+1):
                self.factorial.append(self.factorial[-1]*i%self.mod)
        else:
            self.cnt=[0]*(N+1)
            for i in range(1,N+1):
                self.cnt[i]=self.cnt[i-1]
                ii=i
                while ii%self.p==0:
                    ii//=self.p
                    self.cnt[i]+=1
                self.factorial.append(self.factorial[-1]*ii%self.mod)
        self.factorial_inve=[None]*(N+1)
        self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod

    def Build_Inverse(self,N):
        self.inverse=[None]*(N+1)
        assert self.p>N
        self.inverse[1]=1
        for n in range(2,N+1):
            if n%self.p==0:
                continue
            a,b=divmod(self.mod,n)
            self.inverse[n]=(-a*self.inverse[b])%self.mod
    
    def Inverse(self,n):
        return self.inverse[n]

    def Fact(self,N):
        if N<0:
            return 0
        retu=self.factorial[N]
        if self.e!=None and self.cnt[N]:
            retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
            retu%=self.mod
        return retu

    def Fact_Inve(self,N):
        if self.e!=None and self.cnt[N]:
            return None
        return self.factorial_inve[N]

    def Comb(self,N,K,divisible_count=False):
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
        if self.e!=None:
            cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
            if divisible_count:
                return retu,cnt
            else:
                retu*=pow(self.p,cnt,self.mod)
                retu%=self.mod
        return retu

class Prime:
    def __init__(self,N):
        assert N<=10**8
        self.smallest_prime_factor=[None]*(N+1)
        for i in range(2,N+1,2):
            self.smallest_prime_factor[i]=2
        n=int(N**.5)+1
        for p in range(3,n,2):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
                for i in range(p**2,N+1,2*p):
                    if self.smallest_prime_factor[i]==None:
                        self.smallest_prime_factor[i]=p
        for p in range(n,N+1):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
        self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]

    def Factorize(self,N):
        assert N>=1
        factors=defaultdict(int)
        if N<=len(self.smallest_prime_factor)-1:
            while N!=1:
                factors[self.smallest_prime_factor[N]]+=1
                N//=self.smallest_prime_factor[N]
        else:
            for p in self.primes:
                while N%p==0:
                    N//=p
                    factors[p]+=1
                if N<p*p:
                    if N!=1:
                        factors[N]+=1
                    break
                if N<=len(self.smallest_prime_factor)-1:
                    while N!=1:
                        factors[self.smallest_prime_factor[N]]+=1
                        N//=self.smallest_prime_factor[N]
                    break
            else:
                if N!=1:
                    factors[N]+=1
        return factors

    def Divisors(self,N):
        assert N>0
        divisors=[1]
        for p,e in self.Factorize(N).items():
            pow_p=[1]
            for _ in range(e):
                pow_p.append(pow_p[-1]*p)
            divisors=[i*j for i in divisors for j in pow_p]
        return divisors

    def Is_Prime(self,N):
        return N==self.smallest_prime_factor[N]

    def Totient(self,N):
        for p in self.Factorize(N).keys():
            N*=p-1
            N//=p
        return N

    def Mebius(self,N):
        fact=self.Factorize(N)
        for e in fact.values():
            if e>=2:
                return 0
        else:
            if len(fact)%2==0:
                return 1
            else:
                return -1

def check(N):
    retu=[[None]*N for i in range(N)]
    for i in range(N):
        for j in range(N):
            S=[[0]*N for i in range(N)]
            #for ii in range(N):
            #    for jj in range(N):
            #        if i==ii or j==jj:
            #            S[ii][jj]=1
            S[i][j]=1
            A=[Inversion_Number(S[i]) for i in range(N)]
            B=[Inversion_Number([S[i][j] for i in range(N)]) for j in range(N)]
            retu[i][j]=Inversion_Number(A)+Inversion_Number(B)
    return retu

"""
for N in range(2,6):
    lst=check(N)
    for i in range(N):
        print(*lst[i])
    print()
"""

N,K=map(int,readline().split())
S=[[0]*N for i in range(N)]
if N*(N-1)<K:
    print("No")
else:
    print("Yes")
    s=10**6
    for i in range(N):
        if K<=2*(N-i-1):
            if K==1:
                for x in range(i,N):
                    for y in range(i,N):
                        if x==i or y==i+1:
                            S[x][y]=s
                        else:
                            S[x][y]=s-1
            else:
                for x in range(i,N):
                    for y in range(i,N):
                        S[x][y]=s-1
                
                x=min(N-i-1,2*(N-i-1)-K)+i
                x=2*(N-i-1)-K
                S[x][y]=s
            break
        else:
            K-=2*(N-1)
            for y in range(i+1,N):
                S[i][y]=s-(y-i)
            for x in range(i+1,N):
                S[x][i]=s-(x-i)
            S[i][i]=s
            s-=(N-i)
    for i in range(N):
        print(*S[i])
0