結果

問題 No.2575 Almost Increasing Sequence
ユーザー ForestedForested
提出日時 2023-12-03 15:36:31
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 6,270 ms / 10,000 ms
コード長 11,417 bytes
コンパイル時間 1,800 ms
コンパイル使用メモリ 136,172 KB
実行使用メモリ 6,676 KB
スコア 400,000
最終ジャッジ日時 2023-12-03 15:38:47
合計ジャッジ時間 134,697 ms
ジャッジサーバーID
(参考情報)
judge12 / judge11
純コード判定しない問題か言語
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 6,267 ms
6,676 KB
testcase_01 AC 6,270 ms
6,676 KB
testcase_02 AC 6,211 ms
6,676 KB
testcase_03 AC 6,229 ms
6,676 KB
testcase_04 AC 6,198 ms
6,676 KB
testcase_05 AC 6,206 ms
6,676 KB
testcase_06 AC 6,211 ms
6,676 KB
testcase_07 AC 6,254 ms
6,676 KB
testcase_08 AC 6,207 ms
6,676 KB
testcase_09 AC 6,200 ms
6,676 KB
testcase_10 AC 6,200 ms
6,676 KB
testcase_11 AC 6,262 ms
6,676 KB
testcase_12 AC 6,203 ms
6,676 KB
testcase_13 AC 6,208 ms
6,676 KB
testcase_14 AC 6,196 ms
6,676 KB
testcase_15 AC 6,213 ms
6,676 KB
testcase_16 AC 6,227 ms
6,676 KB
testcase_17 AC 6,247 ms
6,676 KB
testcase_18 AC 6,266 ms
6,676 KB
testcase_19 AC 6,267 ms
6,676 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef LOCAL
#define FAST_IO
#endif

// ============
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i)
#define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER(i, n) for (i32 i = (i32)(n) - 1; i >= 0; --i)
#define ALL(x) begin(x), end(x)

using namespace std;

using u32 = unsigned int;
using u64 = unsigned long long;
using i32 = signed int;
using i64 = signed long long;
using f64 = double;
using f80 = long double;

template <typename T>
using Vec = vector<T>;

template <typename T>
bool chmin(T &x, const T &y) {
    if (x > y) {
        x = y;
        return true;
    }
    return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
    if (x < y) {
        x = y;
        return true;
    }
    return false;
}

#ifdef INT128

using u128 = __uint128_t;
using i128 = __int128_t;

istream &operator>>(istream &is, i128 &x) {
    i64 v;
    is >> v;
    x = v;
    return is;
}
ostream &operator<<(ostream &os, i128 x) {
    os << (i64)x;
    return os;
}
istream &operator>>(istream &is, u128 &x) {
    u64 v;
    is >> v;
    x = v;
    return is;
}
ostream &operator<<(ostream &os, u128 x) {
    os << (u64)x;
    return os;
}

#endif

[[maybe_unused]] constexpr i32 INF = 1000000100;
[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;
struct SetUpIO {
    SetUpIO() {
#ifdef FAST_IO
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
#endif
        cout << fixed << setprecision(15);
    }
} set_up_io;
// ============

#ifdef DEBUGF
#else
#define DBG(x) (void) 0
#endif

// ============

#include <vector>
#include <cassert>

template <typename T>
class FactorialTable {
    std::vector<T> fac;
    std::vector<T> ifac;
    
public:
    FactorialTable() : fac(1, T(1)), ifac(1, T(1)) {}
    
    FactorialTable(int n) : fac(n + 1), ifac(n + 1) {
        assert(n >= 0);
        fac[0] = T(1);
        for (int i = 1; i <= n; ++i) {
            fac[i] = fac[i - 1] * T(i);
        }
        ifac[n] = T(1) / T(fac[n]);
        for (int i = n; i > 0; --i) {
            ifac[i - 1] = ifac[i] * T(i);
        }
    }
    
    void resize(int n) {
        int old = n_max();
        if (n <= old) {
            return;
        }
        fac.resize(n + 1);
        for (int i = old + 1; i <= n; ++i) {
            fac[i] = fac[i - 1] * T(i);
        }
        ifac.resize(n + 1);
        ifac[n] = T(1) / T(fac[n]);
        for (int i = n; i > old; --i) {
            ifac[i - 1] = ifac[i] * T(i);
        }
    }
    
    inline int n_max() const {
        return (int) fac.size() - 1;
    }
    
    inline T fact(int n) const {
        assert(n >= 0 && n <= n_max());
        return fac[n];
    }
    
    inline T inv_fact(int n) const {
        assert(n >= 0 && n <= n_max());
        return ifac[n];
    }
    
    inline T inv_n(int n) const {
        assert(n > 0 && n <= n_max());
        return ifac[n] * fac[n - 1];
    }
    
    inline T choose(int n, int k) const {
        assert(k <= n_max() && n <= n_max());
        if (k > n || k < 0) {
            return T(0);
        }
        return fac[n] * ifac[k] * ifac[n - k];
    }
    
    inline T multi_choose(int n, int k) const {
        assert(n >= 1 && k >= 0 && k + n - 1 <= n_max());
        return choose(k + n - 1, k);
    }
    
    inline T n_terms_sum_k(int n, int k) const {
        assert(n >= 0);
        if (k < 0) {
            return T(0);
        }
        if (n == 0) {
            return k == 0 ? T(1) : T(0);
        }
        return choose(n + k - 1, n - 1);
    }
};
// ============
// ============

#include <cassert>
#include <iostream>
#include <type_traits>

// ============

constexpr bool is_prime(unsigned n) {
    if (n == 0 || n == 1) {
        return false;
    }
    for (unsigned i = 2; i * i <= n; ++i) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}

constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {
    unsigned ret = 1, self = x;
    while (y != 0) {
        if (y & 1) {
            ret = (unsigned) ((unsigned long long) ret * self % mod);
        }
        self = (unsigned) ((unsigned long long) self * self % mod);
        y /= 2;
    }
    return ret;
}

template <unsigned mod>
constexpr unsigned primitive_root() {
    static_assert(is_prime(mod), "`mod` must be a prime number.");
    if (mod == 2) {
        return 1;
    }

    unsigned primes[32] = {};
    int it = 0;
    {
        unsigned m = mod - 1;
        for (unsigned i = 2; i * i <= m; ++i) {
            if (m % i == 0) {
                primes[it++] = i;
                while (m % i == 0) {
                    m /= i;
                }
            }
        }
        if (m != 1) {
            primes[it++] = m;
        }
    }
    for (unsigned i = 2; i < mod; ++i) {
        bool ok = true;
        for (int j = 0; j < it; ++j) {
            if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {
                ok = false;
                break;
            }
        }
        if (ok)
            return i;
    }
    return 0;
}

// y >= 1
template <typename T>
constexpr T safe_mod(T x, T y) {
    x %= y;
    if (x < 0) {
        x += y;
    }
    return x;
}

// y != 0
template <typename T>
constexpr T floor_div(T x, T y) {
    if (y < 0) {
        x *= -1;
        y *= -1;
    }
    if (x >= 0) {
        return x / y;
    } else {
        return -((-x + y - 1) / y);
    }
}

// y != 0
template <typename T>
constexpr T ceil_div(T x, T y) {
    if (y < 0) {
        x *= -1;
        y *= -1;
    }
    if (x >= 0) {
        return (x + y - 1) / y;
    } else {
        return -(-x / y);
    }
}
// ============

template <unsigned mod>
class ModInt {
    static_assert(mod != 0, "`mod` must not be equal to 0.");
    static_assert(
        mod < (1u << 31),
        "`mod` must be less than (1u << 31) = 2147483648.");

    unsigned val;

public:
    static constexpr unsigned get_mod() {
        return mod;
    }
    
    constexpr ModInt() : val(0) {}
    template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr>
    constexpr ModInt(T x) : val((unsigned) ((long long) x % (long long) mod + (x < 0 ? mod : 0))) {}
    template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr>
    constexpr ModInt(T x) : val((unsigned) (x % mod)) {}

    static constexpr ModInt raw(unsigned x) {
        ModInt<mod> ret;
        ret.val = x;
        return ret;
    }

    constexpr unsigned get_val() const {
        return val;
    }

    constexpr ModInt operator+() const {
        return *this;
    }
    constexpr ModInt operator-() const {
        return ModInt<mod>(0u) - *this;
    }

    constexpr ModInt &operator+=(const ModInt &rhs) {
        val += rhs.val;
        if (val >= mod)
            val -= mod;
        return *this;
    }
    constexpr ModInt &operator-=(const ModInt &rhs) {
        val -= rhs.val;
        if (val >= mod)
            val += mod;
        return *this;
    }
    constexpr ModInt &operator*=(const ModInt &rhs) {
        val = (unsigned long long)val * rhs.val % mod;
        return *this;
    }
    constexpr ModInt &operator/=(const ModInt &rhs) {
        val = (unsigned long long)val * rhs.inv().val % mod;
        return *this;
    }

    friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) += rhs;
    }
    friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) -= rhs;
    }
    friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) *= rhs;
    }
    friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) /= rhs;
    }

    constexpr ModInt pow(unsigned long long x) const {
        ModInt<mod> ret = ModInt<mod>::raw(1);
        ModInt<mod> self = *this;
        while (x != 0) {
            if (x & 1)
                ret *= self;
            self *= self;
            x >>= 1;
        }
        return ret;
    }
    constexpr ModInt inv() const {
        static_assert(is_prime(mod), "`mod` must be a prime number.");
        assert(val != 0);
        return this->pow(mod - 2);
    }

    friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) {
        long long val;
        is >> val;
        x.val = val % mod + (val < 0 ? mod : 0);
        return is;
    }

    friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) {
        os << x.val;
        return os;
    }

    friend bool operator==(const ModInt &lhs, const ModInt &rhs) {
        return lhs.val == rhs.val;
    }
    
    friend bool operator!=(const ModInt &lhs, const ModInt &rhs) {
        return lhs.val != rhs.val;
    }
};

[[maybe_unused]] constexpr unsigned mod998244353 = 998244353;
[[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007;

// ============
using M = ModInt<998244353>;

int main() {
    i32 k;
    cin >> k;
    
    i32 n = 20000;
    
    Vec<M> pwk(n + 1);
    REP(i, n + 1) {
        pwk[i] = M(i).pow(k);
    }
    
    FactorialTable<M> table(n);
    
    Vec<M> f2(n + 1), invf2(n + 1);
    REP(i, n + 1) {
        f2[i] = table.fact(i) * table.fact(i);
        invf2[i] = table.inv_fact(i) * table.inv_fact(i);
    }
    
    Vec<M> s0(n + 1), s1(n + 1), s2(n + 1), s3(n + 1), s4(n + 1);
    Vec<M> ans(n + 1);
    
    REP(a_, 1, n + 1) {
        M a = M::raw(a_);
        M a2 = a * a;
        M a3 = a2 * a;
        M a4 = a3 * a;
        
        if (a_ >= 3) {
            REP(i, a_, n + 1) {
                i32 rem = i + 3 - a_;
                M coeff = pwk[a_ - 2] * f2[i] * invf2[a_];
                M sum;
                sum += s0[rem];
                sum += a * s1[rem];
                sum += a2 * s2[rem];
                sum += a3 * s3[rem];
                sum += a4 * s4[rem];
                ans[i] += coeff * sum;
            }
        }
        
        if (a_ >= 2) {
            i32 b_ = a_;
            M b = M::raw(b_);
            M b2 = b * b;
            M b3 = b2 * b;
            M b4 = b3 * b;
            REP(c_, 1, b_) {
                if (b_ + c_ >= n + 1) {
                    break;
                }
                M c = M::raw(c_);
                M c2 = c * c;
                M c3 = c2 * c;
                M c4 = c3 * c;
                i32 idx = b_ + c_;
                M coeff = invf2[b_] * invf2[c_];
                s0[idx] += coeff * (b4 * c2 - M::raw(2) * b3 * c3 + b2 * c4);
                s1[idx] += coeff * M::raw(2) * (-b4 * c + b3 * c2 + b2 * c3 - b * c4);
                s2[idx] += coeff * (b4 + M::raw(2) * b3 * c - M::raw(6) * b2 * c2 + M::raw(2) * b * c3 + c4);
                s3[idx] += coeff * M::raw(2) * (-b3 + b2 * c + b * c2 - c3);
                s4[idx] += coeff * (b2 - M::raw(2) * b * c + c2);
            }
        }
    }
    
    cout << n << '\n';
    REP(i, 1, n + 1) {
        cout << ans[i] << " \n"[i == n];
    }
}
0