結果
| 問題 |
No.2556 Increasing Matrix
|
| コンテスト | |
| ユーザー |
sigma425
|
| 提出日時 | 2023-12-03 18:04:07 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 4,681 ms / 6,000 ms |
| コード長 | 15,569 bytes |
| コンパイル時間 | 2,943 ms |
| コンパイル使用メモリ | 196,328 KB |
| 実行使用メモリ | 48,752 KB |
| 最終ジャッジ日時 | 2024-09-26 22:13:04 |
| 合計ジャッジ時間 | 25,896 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
// #pragma GCC target("avx,avx2")
// #pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> bool chmax(T& x, U y){
if(x<y){ x=y; return true; }
return false;
}
template<class T,class U> bool chmin(T& x, U y){
if(y<x){ x=y; return true; }
return false;
}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
o<<"{";
for(const T& v:vc) o<<v<<",";
o<<"}";
return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }
#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
os<<t<<" ~ ";
dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {"; \
for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif
template<class D> D divFloor(D a, D b){
return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
template<class D> D divCeil(D a, D b) {
return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}
template<class T>
T rnd(T l,T r){ //[l,r)
using D = uniform_int_distribution<T>;
static random_device rd;
static mt19937 gen(rd());
return D(l,r-1)(gen);
}
template<class T>
T rnd(T n){ //[0,n)
return rnd(T(0),n);
}
template<unsigned int mod_>
struct ModInt{
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
constexpr static uint mod = mod_;
uint v;
ModInt():v(0){}
ModInt(ll _v):v(normS(_v%mod+mod)){}
explicit operator bool() const {return v!=0;}
static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1]
static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
ModInt operator-() const { return make(normS(mod-v)); }
ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
ModInt operator/(const ModInt& b) const { return *this*b.inv();}
ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
ModInt& operator++(int){ return *this=*this+1;}
ModInt& operator--(int){ return *this=*this-1;}
template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);}
template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);}
template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);}
template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);}
ModInt pow(ll p) const {
if(p<0) return inv().pow(-p);
ModInt a = 1;
ModInt x = *this;
while(p){
if(p&1) a *= x;
x *= x;
p >>= 1;
}
return a;
}
ModInt inv() const { // should be prime
return pow(mod-2);
}
// ll extgcd(ll a,ll b,ll &x,ll &y) const{
// ll p[]={a,1,0},q[]={b,0,1};
// while(*q){
// ll t=*p/ *q;
// rep(i,3) swap(p[i]-=t*q[i],q[i]);
// }
// if(p[0]<0) rep(i,3) p[i]=-p[i];
// x=p[1],y=p[2];
// return p[0];
// }
// ModInt inv() const {
// ll x,y;
// extgcd(v,mod,x,y);
// return make(normS(x+mod));
// }
bool operator==(const ModInt& b) const { return v==b.v;}
bool operator!=(const ModInt& b) const { return v!=b.v;}
bool operator<(const ModInt& b) const { return v<b.v;}
friend istream& operator>>(istream &o,ModInt& x){
ll tmp;
o>>tmp;
x=ModInt(tmp);
return o;
}
friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
};
using mint = ModInt<998244353>;
//using mint = ModInt<1000000007>;
V<mint> fact,ifact,invs;
mint Choose(int a,int b){
if(b<0 || a<b) return 0;
return fact[a] * ifact[b] * ifact[a-b];
}
void InitFact(int N){ //[0,N]
N++;
fact.resize(N);
ifact.resize(N);
invs.resize(N);
fact[0] = 1;
rep1(i,N-1) fact[i] = fact[i-1] * i;
ifact[N-1] = fact[N-1].inv();
for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
rep1(i,N-1) invs[i] = fact[i-1] * ifact[i];
}
// inplace_fmt (without bit rearranging)
// fft:
// a[rev(i)] <- \sum_j \zeta^{ij} a[j]
// invfft:
// a[i] <- (1/n) \sum_j \zeta^{-ij} a[rev(j)]
// These two are inversions.
// !!! CHANGE IF MOD is unusual !!!
const int ORDER_2_MOD_MINUS_1 = 23; // ord_2 (mod-1)
const mint PRIMITIVE_ROOT = 3; // primitive root of (Z/pZ)*
void fft(V<mint>& a){
static constexpr uint mod = mint::mod;
static constexpr uint mod2 = mod + mod;
static const int H = ORDER_2_MOD_MINUS_1;
static const mint root = PRIMITIVE_ROOT;
static mint magic[H-1];
int n = si(a);
assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2
if(!magic[0]){ // precalc
rep(i,H-1){
mint w = -root.pow(((mod-1)>>(i+2))*3);
magic[i] = w;
}
}
int m = n;
if(m >>= 1){
rep(i,m){
uint v = a[i+m].v; // < M
a[i+m].v = a[i].v + mod - v; // < 2M
a[i].v += v; // < 2M
}
}
if(m >>= 1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
uint v = (a[i+m] * p).v; // < M
a[i+m].v = a[i].v + mod - v; // < 3M
a[i].v += v; // < 3M
}
p *= magic[__builtin_ctz(++h)];
}
}
while(m){
if(m >>= 1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
uint v = (a[i+m] * p).v; // < M
a[i+m].v = a[i].v + mod - v; // < 4M
a[i].v += v; // < 4M
}
p *= magic[__builtin_ctz(++h)];
}
}
if(m >>= 1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
uint v = (a[i+m] * p).v; // < M
a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M
a[i+m].v = a[i].v + mod - v; // < 3M
a[i].v += v; // < 3M
}
p *= magic[__builtin_ctz(++h)];
}
}
}
rep(i,n){
a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M
a[i].v = (a[i].v >= mod) ? a[i].v - mod : a[i].v; // < M
}
// finally < mod !!
}
void invfft(V<mint>& a){
static constexpr uint mod = mint::mod;
static constexpr uint mod2 = mod + mod;
static const int H = ORDER_2_MOD_MINUS_1;
static const mint root = PRIMITIVE_ROOT;
static mint magic[H-1];
int n = si(a);
assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2
if(!magic[0]){ // precalc
rep(i,H-1){
mint w = -root.pow(((mod-1)>>(i+2))*3);
magic[i] = w.inv();
}
}
int m = 1;
if(m < n>>1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
ull x = a[i].v + mod - a[i+m].v; // < 2M
a[i].v += a[i+m].v; // < 2M
a[i+m].v = (p.v * x) % mod; // < M
}
p *= magic[__builtin_ctz(++h)];
}
m <<= 1;
}
for(;m < n>>1; m <<= 1){
mint p = 1;
for(int h=0,s=0; s<n; s+= m*2){
for(int i=s;i<s+(m>>1);i++){
ull x = a[i].v + mod2 - a[i+m].v; // < 4M
a[i].v += a[i+m].v; // < 4M
a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M
a[i+m].v = (p.v * x) % mod; // < M
}
for(int i=s+(m>>1); i<s+m; i++){
ull x = a[i].v + mod - a[i+m].v; // < 2M
a[i].v += a[i+m].v; // < 2M
a[i+m].v = (p.v * x) % mod; // < M
}
p *= magic[__builtin_ctz(++h)];
}
}
if(m < n){
rep(i,m){
uint x = a[i].v + mod2 - a[i+m].v; // < 4M
a[i].v += a[i+m].v; // < 4M
a[i+m].v = x; // < 4M
}
}
const mint in = mint(n).inv();
rep(i,n) a[i] *= in; // < M
// finally < mod !!
}
// A,B = 500000 -> 70ms
// verify https://judge.yosupo.jp/submission/44937
V<mint> multiply(V<mint> a, V<mint> b) {
int A = si(a), B = si(b);
if (!A || !B) return {};
int n = A+B-1;
int s = 1; while(s<n) s*=2;
if(a == b){ // # of fft call : 3 -> 2
a.resize(s); fft(a);
rep(i,s) a[i] *= a[i];
}else{
a.resize(s); fft(a);
b.resize(s); fft(b);
rep(i,s) a[i] *= b[i];
}
invfft(a); a.resize(n);
return a;
}
/*
係数アクセス
f[i] でいいが、 配列外参照する可能性があるなら at/set
*/
template<class mint>
struct Poly: public V<mint>{
using vector<mint>::vector;
Poly() {}
explicit Poly(int n) : V<mint>(n){} // poly<mint> a; a = 2; shouldn't be [0,0]
Poly(int n, mint c) : V<mint>(n,c){}
Poly(const V<mint>& a) : V<mint>(a){}
Poly(initializer_list<mint> li) : V<mint>(li){}
int size() const { return V<mint>::size(); }
mint at(int i) const {
return i<size() ? (*this)[i] : 0;
}
void set(int i, mint x){
if(i>=size() && !x) return;
while(i>=size()) this->pb(0);
(*this)[i] = x;
return;
}
mint operator()(mint x) const { // eval
mint res = 0;
int n = size();
mint a = 1;
rep(i,n){
res += a * (*this)[i];
a *= x;
}
return res;
}
Poly low(int n) const { // ignore x^n (take first n), but not empty
return Poly(this->begin(), this->begin()+min(max(n,1),size()));
}
Poly rev() const {
return Poly(this->rbegin(), this->rend());
}
friend ostream& operator<<(ostream &o,const Poly& f){
o << "[";
rep(i,f.size()){
o << f[i];
if(i != f.size()-1) o << ",";
}
o << "]";
return o;
}
Poly operator-() const {
Poly res = *this;
for(auto& v: res) v = -v;
return res;
}
Poly& operator+=(const mint& c){
(*this)[0] += c;
return *this;
}
Poly& operator-=(const mint& c){
(*this)[0] -= c;
return *this;
}
Poly& operator*=(const mint& c){
for(auto& v: *this) v *= c;
return *this;
}
Poly& operator/=(const mint& c){
return *this *= mint(1)/mint(c);
}
Poly& operator+=(const Poly& r){
if(size() < r.size()) this->resize(r.size(),0);
rep(i,r.size()) (*this)[i] += r[i];
return *this;
}
Poly& operator-=(const Poly& r){
if(size() < r.size()) this->resize(r.size(),0);
rep(i,r.size()) (*this)[i] -= r[i];
return *this;
}
Poly& operator*=(const Poly& r){
return *this = multiply(*this,r);
}
// 何回も同じrで割り算するなら毎回rinvを計算するのは無駄なので、呼び出し側で一回計算した後直接こっちを呼ぶと良い
// 取るべきinvの長さに注意
// 例えば mod r で色々計算したい時は、基本的に deg(r) * 2 長さの多項式を r で割ることになる
// とはいえいったん rinv を長く計算したらより短い場合はprefix見るだけだし、 rinv としてムダに長いものを渡しても問題ないので
// 割られる多項式として最大の次数を取ればよい
Poly quotient(const Poly& r, const Poly& rinv){
int m = r.size(); assert(r[m-1].v);
int n = size();
int s = n-m+1;
if(s <= 0) return {0};
return (rev().low(s)*rinv.low(s)).low(s).rev();
}
Poly& operator/=(const Poly& r){
return *this = quotient(r,r.rev().inv(max(size()-r.size(),0)+1));
}
Poly& operator%=(const Poly& r){
*this -= *this/r * r;
return *this = low(r.size()-1);
}
Poly operator+(const mint& c) const {return Poly(*this) += c; }
Poly operator-(const mint& c) const {return Poly(*this) -= c; }
Poly operator*(const mint& c) const {return Poly(*this) *= c; }
Poly operator/(const mint& c) const {return Poly(*this) /= c; }
Poly operator+(const Poly& r) const {return Poly(*this) += r; }
Poly operator-(const Poly& r) const {return Poly(*this) -= r; }
Poly operator*(const Poly& r) const {return Poly(*this) *= r; }
Poly operator/(const Poly& r) const {return Poly(*this) /= r; }
Poly operator%(const Poly& r) const {return Poly(*this) %= r; }
Poly diff() const {
Poly g(max(size()-1,0));
rep(i,g.size()) g[i] = (*this)[i+1] * (i+1);
return g;
}
Poly intg() const {
assert(si(invs) > size());
Poly g(size()+1);
rep(i,size()) g[i+1] = (*this)[i] * invs[i+1];
return g;
}
Poly square() const {
return multiply(*this,*this);
}
// 1/f(x) mod x^s
// N = s = 500000 -> 90ms
// inv は 5 回 fft(2n) を呼んでいるので、multiply が 3 回 fft(2n) を呼ぶのと比べると
// だいたい multiply の 5/3 倍の時間がかかる
// 導出: Newton
// fg = 1 mod x^m
// (fg-1)^2 = 0 mod x^2m
// f(2g-fg^2) = 1 mod x^2m
// verify: https://judge.yosupo.jp/submission/44938
Poly inv(int s) const {
Poly r(s);
r[0] = mint(1)/at(0);
for(int n=1;n<s;n*=2){ // 5 times fft : length 2n
V<mint> f = low(2*n); f.resize(2*n);
fft(f);
V<mint> g = r.low(2*n); g.resize(2*n);
fft(g);
rep(i,2*n) f[i] *= g[i];
invfft(f);
rep(i,n) f[i] = 0;
fft(f);
rep(i,2*n) f[i] *= g[i];
invfft(f);
for(int i=n;i<min(2*n,s);i++) r[i] -= f[i];
}
return r;
}
};
template<class mint>
V<mint> MultipointEval(const Poly<mint>& f, V<mint> a){
int Q = a.size();
int s = 1; while(s < Q) s *= 2;
V<Poly<mint>> g(s+s,{1});
rep(i,Q) g[s+i] = {-a[i],1};
for(int i=s-1;i>0;i--) g[i] = g[i*2] * g[i*2+1];
g[1] = f % g[1];
for(int i=2;i<s+Q;i++) g[i] = g[i>>1] % g[i];
V<mint> res(Q);
rep(i,Q) res[i] = g[s+i][0];
return res;
}
/*
差積 \prod_{i<j} (A_j-A_i)
f_0 := 1, f_1 := (x-A_0), .. , f_N := (x-A_0)..(x-A_{N-1}) として
ans = \prod_{i} f_i(A_i)
*/
mint diffProd(V<mint> A){
int N = si(A);
int s = 1, h = 0; while(s < N) {s *= 2; h++;}
V<Poly<mint>> g(s+s,{1});
rep(i,N) g[s+i] = {-A[i],1};
for(int i=s-1;i>0;i--) g[i] = g[i*2] * g[i*2+1];
mint res = 1;
rep(k,h+1){
rep(i,1<<k) if(!(i&1)){
int y = (i+1)<<(h-k), z = (i+2)<<(h-k);
V<mint> ps;
for(int p=y;p<min(z,N);p++) ps.eb(A[p]);
int id = (1<<k)+i;
auto qs = MultipointEval<mint>(g[id],ps);
for(auto q: qs) res *= q;
}
}
return res;
}
/*
SSYT of shape A with values [1,M]
A: decreasing
O(M log^2 M)
多分 O(N log^2 N) にできる (N > M なら ans = 0 に注意)
*/
mint CountSSYT(V<ll> A, ll M){
if(M >= 1000000) assert(false);
while(!A.empty() && A.back() == 0) A.pop_back();
int N = si(A);
if(N > M) return 0;
rep(i,M-N) A.eb(0);
N = M;
V<mint> B(N); rep(i,N) B[i] = A[i]+N-i;
reverse(all(B));
mint numer = diffProd(B);
mint denom = 1; rep(i,N) denom *= fact[i];
return numer/denom;
}
/*
左下と右上で同じなので ans = ()^2
() は Gelfand-Tsetlin pattern そのものなので、
() = # of {SSYT of shape λ := (A_N,..,A_1) で値が [1,N] }
s_λ(1^n) = \prod_{u \in λ} (n+c(u)) / h(u)
どちらも差積の形でかける
*/
int main(){
cin.tie(0);
ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !!
cout << fixed << setprecision(20);
InitFact(1000000);
int N; cin >> N;
V<ll> A(N); rep(i,N) cin >> A[i]; reverse(all(A));
cout << CountSSYT(A,N).pow(2) << endl;
}
sigma425