結果
問題 | No.430 文字列検索 |
ユーザー | marurunn11 |
提出日時 | 2023-12-03 23:13:23 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 894 ms / 2,000 ms |
コード長 | 22,751 bytes |
コンパイル時間 | 3,661 ms |
コンパイル使用メモリ | 233,848 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-10 01:08:16 |
合計ジャッジ時間 | 12,663 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 879 ms
5,248 KB |
testcase_02 | AC | 878 ms
5,248 KB |
testcase_03 | AC | 879 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 7 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 5 ms
5,248 KB |
testcase_11 | AC | 882 ms
5,248 KB |
testcase_12 | AC | 879 ms
5,248 KB |
testcase_13 | AC | 881 ms
5,248 KB |
testcase_14 | AC | 887 ms
5,248 KB |
testcase_15 | AC | 881 ms
5,248 KB |
testcase_16 | AC | 890 ms
5,248 KB |
testcase_17 | AC | 894 ms
5,248 KB |
ソースコード
#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include "bits/stdc++.h" #ifdef _MSC_VER #include <intrin.h> //gcc上ではこれがあると動かない。__popcnt, umul128 等用のincludeファイル。 #define __builtin_popcount __popcnt #define __builtin_popcountll __popcnt64 // 1 の位から何個 0 が連なっているか。(0 入れると 0 を返す。) inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; } inline unsigned int __builtin_ctzll(unsigned long long x) { unsigned long r; _BitScanForward64(&r, x); return r; } // 2進での leading 0 の個数。(0 入れると 32, 64 を返す。) inline unsigned int __builtin_clz(unsigned x) { return (unsigned int)__lzcnt(x); } inline unsigned int __builtin_clzll(unsigned long long x) { return (unsigned int)__lzcnt64(x); } #pragma warning(disable : 4996) #pragma intrinsic(_umul128) #endif //#include <atcoder/all> //using namespace atcoder; using namespace std; //---------- 多倍長関連 ---------- //#include <boost/multiprecision/cpp_int.hpp> //#include <boost/multiprecision/cpp_dec_float.hpp> //using namespace boost::multiprecision; typedef long long ll; typedef long double ld; //#define int long long #define LL128 boost::multiprecision::int128_t #define LL boost::multiprecision::cpp_int #define LD100 boost::multiprecision::cpp_dec_float_100 #define LD50 boost::multiprecision::cpp_dec_float_50 #define rep(i, n) for(long long i = 0; i < (n); ++i) #define REP(i, s, n) for(long long i = (s); i < (n); ++i) #define rrep(i, n) for(long long i = (n) - 1; i >= 0; --i) #define sqrt(d) pow((ld) (d), 0.50) #define PII pair<int, int> #define MP make_pair #define PB push_back #define ALL(v) v.begin(), v.end() constexpr int INF2 = std::numeric_limits<int>::max() / 2 - 10000000; constexpr long long INF = std::numeric_limits<long long>::max() / 2 - 10000000; const ld pi = acos(-1); //constexpr int MOD = 1000000007; //1e9 + 7 constexpr int MOD = 998244353; // 7 * 17 * 2^23 + 1 //---------- chmax, min 関連 ---------- template<class T> inline void chmax(T& a, T b) { if (a < b) a = b; } template<class T> inline void chmin(T& a, T b) { if (a > b) a = b; } //---------- gcd, lcm ---------- template<typename T = long long> T my_gcd(T a, T b) { if (b == (T)0) return a; return my_gcd<T>(b, a % b); } template<typename T = long long> T my_lcm(T a, T b) { return a / my_gcd<T>(a, b) * b; } // ax + by = gcd(a, b) を解く。返り値は、gcd(a, b)。 // 但し、a, b が負である場合は、返り値が正であることは保障されない。 long long my_gcd_ext(long long a, long long b, long long& x, long long& y) { if (b == 0) { x = 1; y = 0; return a; } long long tempo = my_gcd_ext(b, a % b, y, x); //bx' + ry' = gcd(a, b) → (qb + r)x + by = gcd(a, b) に戻さないといけない。// (r = a % b) //b(x' - qy') + (bq + r)y' = gcd(a, b) と同値変形できるから、 // x = y', y = x' - qy' y -= (a / b) * x; return tempo; } //中国式剰余の定理 (CRT) // x = base1 (mod m1) かつ x = base2 (mod m2) を解く。 // リターン値を (r, m) とすると解は x = r (mod m) で、m = lcm(m1, m2) // 解なしの場合は (0, -1) をリターン pair<long long, long long> CRT(long long base1, long long m1, long long base2, long long m2) { long long p, q; long long gcd0 = my_gcd_ext(m1, m2, p, q); if ((base2 - base1) % gcd0 != 0) return make_pair(0, -1); long long lcm0 = m1 * (m2 / gcd0); // 括弧がないとオーバーフローのリスクがある。 p *= (base2 - base1) / gcd0; p %= (m2 / gcd0); //q *= (base2 - base1) / gcd0; //q %= (m1 / gcd0); long long r = (base1 + m1 * p) % lcm0; if (r < 0) r += lcm0; return make_pair(r, lcm0); } //M を法として、a の逆元を返す。但し gcd(a, M) = 1。 long long my_invmod(long long a, long long M) { long long x = 0, y = 0; long long memo = my_gcd_ext(a, M, x, y); assert(memo == 1LL); x %= M; if (x < 0) x += M; return x; } //繰り返し2乗法 (非再帰) //N^aの、Mで割った余りを求める。 template<typename T = long long> constexpr T my_pow(T N, long long a, T M) { assert(0 <= a); T x = N % M, res = (T)1; while (a) { if (a & 1) { res *= x; res %= M; } x *= x; // x は *this の (2のべき乗) 乗を管理する。 x %= M; a >>= 1; } return res; } // 繰り返し2乗法 (非再帰) // T = modint でも動く。 template<typename T = long long> constexpr T my_pow(T N, long long a) { assert(0 <= a); T x = N, res = (T)1; while (a) { if (a & 1) res *= x; x *= x; // x は *this の (2のべき乗) 乗を管理する。 a >>= 1; } return res; } // base を底としたときの、n の i桁目を、v.at(i) に入れる。 vector<signed> ll_to_vector(signed base, long long n) { long long tempo = n; long long tempo2 = n; //桁数を求めるときに使う signed n_digit = 1; while (tempo2 >= base) { tempo2 /= base; n_digit++; } vector<signed> v(n_digit, 0); // v のサイズを適切に調整。 long long denominator = my_pow<long long>((long long)base, (long long)(n_digit - 1)); for (signed i = 0; i < n_digit; i++) { v.at(i) = tempo / denominator; tempo -= v.at(i) * denominator; denominator /= base; } return v; } // M 桁に足りない場合、0 を追加して強制的に M 桁にする。 vector<signed> ll_to_vector(signed base, long long n, int M) { vector<signed> v = ll_to_vector(base, n); //assert((int)v.size() <= M); if ((int)v.size() >= M) return v; else { int diff = M - v.size(); vector<signed> res(diff, 0); for (int i = 0; i < (int)v.size(); i++) res.emplace_back(v.at(i)); return res; } } //エラトステネスの篩で、prime で ないところに false を入れる。O(n loglog n) // T = int (defalt, sieve が ll で間に合うことはないので。) // vector<char> に替えるとむしろ遅くなる。 template<typename T = int> vector<bool> sieve_bool(T N) { vector<bool> res(N + 1, true); res.at(0) = false; res.at(1) = false; for (T i = 2; 2 * i <= N; i++) { res.at(2 * i) = false; } for (T i = 3; i * i <= N; i += 2) { //ここからは奇数のみ探索。i の倍数に false を入れる。 if (res.at(i)) { T j = i * i; // i^2 未満の i の倍数には、すでに false が入っているはず。 while (j <= N) { res.at(j) = false; j += 2 * i; } } } return res; }; // n + 1 の サイズの vector を返す。res.at(i) には、i の 1 以外で最小の約数を入れる。 // res.at(i) == i で、i != 0, 1 なら i は素数。 // 2e8 なら、2.3 ~ 2.4 sec 程度で終わる。sieve_bool は 0.7 sec なので、3 倍強遅い。ll にすると、3.2 sec に伸びてしまう。 // T = int (defalt, sieve が ll で間に合うことはないので。) template<typename T = int> vector<T> sieve(T n) { n++; // n まで判定する。配列サイズは +1。 vector<T> res(n, 0); for (T i = 1; i < n; i++) { if (i % 2 == 0) res.at(i) = 2; // 偶数をあらかじめ処理。 else res.at(i) = i; // 奇数には自分自身を入れる。 } for (T i = 3; i * i < n; i += 2) { //ここからは奇数のみ探索。i の倍数に i を入れる。 if (res.at(i) == i) { T j = i * i; // i^2 未満の i の倍数には、すでに最小の約数が入っているはず。 while (j < n) { if (res.at(j) == j) res.at(j) = i; j += 2 * i; } } } return res; }; //O (sqrt(n)) で素数判定する用。 constexpr bool is_prime(long long N) { //有名素数 if (N == 1000000007 || N == 1000000009) return true; if (N == 998244353 || N == 167772161 || N == 469762049 || N == 1224736769) return true; //g = 3; if (N == 924844033 || N == 1012924417) return true; //g = 5; if (N == 163577857) return true; //g = 23; //小さい素数の別処理 if (N <= 1) return false; if (N == 2 || N == 3) return true; if (N % 2 == 0) return false; if (N % 3 == 0) return false; for (long long i = 1; (6 * i + 1) * (6 * i + 1) <= N; ++i) { if (N % (6 * i + 1) == 0) return false; } for (long long i = 0; (6 * i + 5) * (6 * i + 5) <= N; ++i) { if (N % (6 * i + 5) == 0) return false; } return true; } template <int n> constexpr bool is_prime_constexpr = is_prime(n); // 素因分解アルゴリズム (O(sqrt(N)) → O(N^0.25) のρ法も持っている。 // T = long long (defalt) template<typename T = long long> map<T, T> PrimeFactor(T N) { map<T, T> res; T i = 2; while (i * i <= N) { while (N % i == 0) { res[i]++; N /= i; } i += 1 + (i % 2); //i == 2 の場合だけ +1, その他の場合は +2 } if (N > 1) res[N]++; //sqrt((元の N)) より大きな素因数は高々1つしかない。 return res; } //関数 sieve で得た、vector min_factor を持ってるときに、素因数分解を高速で行うための関数。 // T = int (defalt, sieve が ll で間に合うことはないので。) template<typename T = int> map<T, T> PrimeFactor2(T target, vector<T>& min_factor) { map<T, T> res; if (min_factor.empty() || (T)min_factor.size() - 1 < target) min_factor = sieve<T>(target); while (target > 1) { res[min_factor[target]]++; target /= min_factor[target]; } return res; } //約数全列挙を O(sqrt(N)) で行うための関数。 vector<long long> count_dividers(long long target) { vector <long long> dividers, tempo; long long i = 1; while (i * i < target + 1) { if (target % i == 0) { dividers.push_back(i); if (i < target / i) tempo.push_back(target / i); // if節がないと、平方数の時、sqrt(target) がダブルカウントされる。 } i++; } for (long long j = 0; j < (long long)tempo.size(); j++) { dividers.push_back(tempo.at(tempo.size() - 1 - j)); } return dividers; } //関数 sieve で得た、vector min_factor を持ってるときに、約数全列挙を高速で行うための関数。 // T = int (defalt, sieve が ll で間に合うことはないので。) template<typename T = int> vector<T> count_dividers2(T target, vector<T>& min_factor, bool is_sort = false) { vector<T> dividers = { 1 }; map<T, T> memo = PrimeFactor2<T>(target, min_factor); for (auto&& iter = memo.begin(); iter != memo.end(); iter++) { vector <T> tempo = dividers; for (T k = 0; k < (T)tempo.size(); k++) { T times = 1; for (T j = 1; j <= (iter->second); j++) { times *= iter->first; dividers.push_back(tempo[k] * times); } } } if (is_sort) sort(dividers.begin(), dividers.end()); //sortしないと小さい順に並ばないが、必要ないなら消しても良い。 return dividers; } class UnionFind { private: vector<int> parent; vector<int> rank; vector<int> v_size; vector<int> v_rep; //代表元 public: UnionFind(int N) : parent(N), rank(N, 0), v_size(N, 1), v_rep(N, 1) { rep(i, N) { parent[i] = i; v_rep[i] = i; } } int root(int x) { if (parent[x] == x) return x; return parent[x] = root(parent[x]); //経路圧縮 } void unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return; //xの根とyの根が同じなので、何もしない。 if (rank[rx] < rank[ry]) { parent[rx] = ry; v_size[ry] += v_size[rx]; } else { parent[ry] = rx; v_size[rx] += v_size[ry]; if (rank[rx] == rank[ry]) ++rank[rx]; } } bool same(int x, int y) { return (root(x) == root(y)); } int count_tree() { int N = parent.size(); int res = 0; rep(i, N) { if (root(i) == i) ++res; } return res; } int size(int x) { return v_size[root(x)]; } //代表元のセット (x を含む集合の代表元を x にする) void set_rep(int x) { assert(0 <= x && x < (int)parent.size()); int rx = root(x); v_rep[rx] = x; } //x を含む集合の代表元を返す。 int get_rep(int x) { assert(0 <= x && x < (int)parent.size()); int rx = root(x); return v_rep[rx]; } }; // 幾何。二点間距離。 ld calc_dist(int x1, int y1, int x2, int y2) { int tempo = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2); ld res = sqrt((ld)tempo); return res; } //ランレングス圧縮 vector<pair<int, char>> RunLength(const string& S) { int N = S.size(); vector<pair<int, char>> memo; if (N == 1) { memo.push_back(MP(1, S.at(0))); return memo; } int tempo = 1; for (int i = 1; i < N; i++) { if (i != N - 1) { if (S.at(i) == S.at(i - 1)) tempo++; else { memo.push_back(MP(tempo, S.at(i - 1))); tempo = 1; } } else { if (S.at(i) == S.at(i - 1)) { tempo++; memo.push_back(MP(tempo, S.at(i - 1))); } else { memo.push_back(MP(tempo, S.at(i - 1))); memo.push_back(MP(1, S.at(i))); } } } return memo; } void printf_ld(ld res) { printf("%.12Lf\n", res); //cout << std::fixed << std::setprecision(12) << res << endl; } template <class X> void print_vec(const X& v) { if (v.empty()) cout << endl; for (typename X::const_iterator iter = std::begin(v); iter != std::end(v); ++iter) { if (iter != --std::end(v)) cout << *iter << " "; else cout << *iter << endl; } } template <class X> void print_vec_debug(const X& v) { if (v.empty()) std::cerr << endl; for (typename X::const_iterator iter = std::begin(v); iter != std::end(v); ++iter) { if (iter != --std::end(v)) std::cerr << *iter << " "; else std::cerr << *iter << endl; } } //mint 構造体。自動で mod を取る。 //m はコンパイル時に決まる定数である必要があるので、入力を用いることはできない。 //割り算に m の素数判定が必要になり、is_prime に依存するようになった。 //※ constexpr 関数の const 修飾は C++11 では許されない。 template<int m, typename T = long long> class mint { private: T _val; public: //---------- コンストラクタ ---------- constexpr mint(T v = 0LL) noexcept : _val(v% m) { if (_val < 0) _val += m; } constexpr T val() const noexcept { return _val; } //------------------------------ 二項演算子のオーバーロード ------------------------------ constexpr mint& operator += (const mint& r) noexcept { _val += r._val; if (_val >= m) _val -= m; return *this; } constexpr mint& operator -= (const mint& r) noexcept { _val -= r._val; if (_val < 0) _val += m; return *this; } constexpr mint& operator *= (const mint& r) noexcept { _val *= r._val; _val %= m; return *this; } constexpr mint& operator /= (const mint& r) noexcept { if (!prime) { //a * u + b * v = 1 を互除法で解く。但し、gcd(a, m) == 1 でなければならない。 T a = r._val, b = m, u = 1, v = 0; while (b) { T q = a / b; a -= q * b; swap(a, b); //互除法。余りをとって swap。 u -= q * v; swap(u, v); } //assert(a == 1); //gcd(r._val, m) == 1; _val *= u; _val %= m; if (_val < 0) _val += m; } else { //フェルマーの小定理。底が prime である場合のみ使用可能。 *this *= r.modpow(m - 2); } return *this; } constexpr mint operator + (const mint& r) const noexcept { return mint(*this) += r; } constexpr mint operator - (const mint& r) const noexcept { return mint(*this) -= r; } constexpr mint operator * (const mint& r) const noexcept { return mint(*this) *= r; } constexpr mint operator / (const mint& r) const noexcept { return mint(*this) /= r; } constexpr bool operator == (const mint& r) const noexcept { return this->_val == r._val; } constexpr bool operator != (const mint& r) const noexcept { return this->_val != r._val; } //------------------------------ 単項演算子のオーバーロード ------------------------------ //---------- 前置インクリメントのオーバーロード ---------- constexpr mint operator ++() noexcept { this->_val++; if (this->_val == m) this->_val = 0; return mint(*this); } constexpr mint operator --() noexcept { if (this->_val == 0) this->_val = m; this->_val--; return mint(*this); } //---------- 後置インクリメントのオーバーロード ---------- constexpr mint operator++(signed) noexcept { mint temp(_val); ++_val; if (_val == m) _val = 0; return temp; } constexpr mint operator--(signed) noexcept { mint temp(_val); if (_val == 0) _val = m; --_val; return temp; } constexpr mint operator -() const noexcept { return mint(-_val); } //---------- 入出力のオーバーロード ---------- friend constexpr ostream& operator << (ostream& os, const mint<m, T>& x) noexcept { return os << x._val; } friend istream& operator >> (istream& is, mint<m, T>& x) noexcept { T init_val; is >> init_val; x = mint<m, T>(init_val); return is; } //---------- 逆元 ---------- constexpr mint<m, T> inverse() const noexcept { mint<m, T> e(1); return e / (*this); } private: // 愚直な O(sqrt(m)) の素数判定; 余りに m が大きすぎると、コンパイル時の定数式の評価に失敗するが、1e11 程度までなら大丈夫。 // Miller-Rabin を使ってもよい。 static constexpr bool prime = is_prime_constexpr<m>; //---------- 繰り返し二乗法 ---------- constexpr mint<m, T> modpow(long long n) const noexcept { assert(0 <= n); mint<m, T> x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; // x は *this の (2のべき乗) 乗を管理する。 n >>= 1; } return r; } }; using modint = mint<MOD, long long>; vector<modint> dp_fac; vector<modint> dp_fac_inv; // x!まで計算するときに最初に呼び出す。o(x). template<typename T = modint> void fac_initialize(int x, vector<T>& dp = dp_fac, vector<T>& dp_inv = dp_fac_inv) { if ((int)dp.size() <= x) { int n = dp.size(); if (n == 0) ++n; dp.resize(x + 1, (T)1); for (int i = n; i <= x; ++i) { dp.at(i) = dp.at(i - 1) * i; } } if ((int)dp_inv.size() <= x) { int n = dp_inv.size(); dp_inv.resize(x + 1, (T)1); dp_inv.at(x) /= dp.at(x); for (int i = x - 1; i >= n; --i) { dp_inv.at(i) = dp_inv.at(i + 1) * (i + 1); } } } // 階乗。x ! まで計算する。結果は dp (デフォルトで dp_fac<modint>) に保存する。 // long long にするためには、第二引数に vector<long long> を指定する必要がある。20 ! = 2.43e18 まで long long に入る。 template<typename T = modint> T factorial(int x, vector<T>& dp = dp_fac) { assert(x >= 0); //既に計算済み if ((int)dp.size() > x) { return dp.at(x); } int n = dp.size(); //dp サイズを x + 1 に伸ばす。 for (int i = n; i < x + 1; i++) { if (i == 0) dp.push_back((T)1); else dp.push_back(dp.back() * i); } return dp.at(x); } template<typename T = modint> T factorial_inv(int x, vector<T>& dp = dp_fac_inv) { assert(x >= 0); //既に計算済み if ((int)dp.size() > x) { return dp.at(x); } int n = dp.size(); //dp サイズを x + 1 に伸ばす。 for (int i = n; i < x + 1; i++) { if (i == 0) dp.push_back((T)1); else dp.push_back(dp.back() / i); } return dp.at(x); } // 二項係数 N_C_a template<typename T = modint, typename U = int> T my_comb(U N, U a, vector<T>& dp = dp_fac, vector<T>& dp_inv = dp_fac_inv) { if (N < a) return (T)0; T ans = factorial<T>(N, dp); ans *= factorial_inv<T>(a, dp_inv); ans *= factorial_inv<T>(N - a, dp_inv); return ans; } //二項係数 N_C_a (1点計算用) template<typename T, typename U = int> T my_comb2(U N, U a) { if (N < a) return (T)0; T answer = 1; for (U i = (U)0; i < a; i++) { answer *= (N - i); answer /= i + 1; } return answer; } ld now_clock() { ld t = (ld)clock() / (ld)CLOCKS_PER_SEC; return t; } //ローリングハッシュ //参考; https://drken1215.hatenablog.com/entry/2019/09/16/014600 struct RollingHash { static const int base1 = 1007, base2 = 2009; static const int mod1 = 1000000007, mod2 = 1000000009; vector<long long> hash1, hash2, power1, power2; //衝突防止のため、2つの基底・mod に対してハッシュを計算しておく。 //hash は、ハッシュの累積和。power は、base のべき乗。 // construct RollingHash(const string& S) { int N = (int)S.size(); hash1.assign(N + 1, 0); hash2.assign(N + 1, 0); power1.assign(N + 1, 1); power2.assign(N + 1, 1); for (int i = 0; i < N; ++i) { hash1[i + 1] = (hash1[i] * base1 + S[i]) % mod1; hash2[i + 1] = (hash2[i] * base2 + S[i]) % mod2; power1[i + 1] = (power1[i] * base1) % mod1; power2[i + 1] = (power2[i] * base2) % mod2; } } RollingHash() { int N = 0; hash1.assign(N + 1, 0); hash2.assign(N + 1, 0); power1.assign(N + 1, 1); power2.assign(N + 1, 1); } // get hash of S[left:right) inline pair<long long, long long> get(int l, int r) const { long long res1 = hash1[r] - hash1[l] * power1[r - l] % mod1; if (res1 < 0) res1 += mod1; long long res2 = hash2[r] - hash2[l] * power2[r - l] % mod2; if (res2 < 0) res2 += mod2; return { res1, res2 }; } // get lcp of S[a:] and S[b:] //二分探索。 inline int getLCP(int a, int b) const { int len = (int)hash1.size() - max(a, b); //(N + 1 - max(a, b)), 最大でも答えは N - max(a, b) なので、それより 1 大きい値が取れている。 int low = 0, high = len; while (high - low > 1) { int mid = (low + high) >> 1; if (get(a, a + mid) != get(b, b + mid)) high = mid; else low = mid; } return low; } // get lcp of S[a:] and T[b:] (S は自身で、T は RollingHash& r) //二分探索。 int getLCP(const int a, const int b, RollingHash& r) { int len = min((int)hash1.size() - a, (int)r.hash1.size() - b); //(N + 1 - max(a, b)), 最大でも答えは N - max(a, b) なので、それより 1 大きい値が取れている。 int low = 0, high = len; while (high - low > 1) { int mid = (low + high) >> 1; if (get(a, a + mid) != r.get(b, b + mid)) high = mid; else low = mid; } return low; } //文字列検索 O(|T| + |S|)。Rabin-Karp //T は S に含まれるか ? bool contain(string T) { int Sl = (int)hash1.size() - 1; int Tl = (int)T.size(); if (Sl < Tl) return false; long long Thash1 = 0, Thash2 = 0; for (int i = 0; i < Tl; ++i) { Thash1 = (Thash1 * base1 + T[i]) % mod1; Thash2 = (Thash2 * base2 + T[i]) % mod2; } pair<long long, long long> target = MP(Thash1, Thash2); for (int i = 0; i + Tl <= Sl; i++) { if (get(i, i + Tl) == target) return true; } return false; } }; signed main() { string S; cin >> S; int N = S.size(); RollingHash rhs(S); int Q; cin >> Q; int cnt = 0; rep(q, Q) { string C; cin >> C; int M = C.size(); RollingHash rhc(C); rep(i, N - M + 1) { if (rhs.get(i, i + M) == rhc.get(0, M)) ++cnt; } } cout << cnt << endl; }